blob: b1a81ef4353003c44131822f10ee9f5b2dc613a0 [file] [log] [blame]
Aidan Thorntondb4e87d2013-08-27 18:01:53 +00001/*
2 * Support for Atmel AT45DB series DataFlash chips.
3 * This file is part of the flashrom project.
4 *
5 * Copyright (C) 2012 Aidan Thornton
6 * Copyright (C) 2013 Stefan Tauner
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include <string.h>
23#include "flash.h"
24#include "chipdrivers.h"
25#include "programmer.h"
26#include "spi.h"
27
28/* Status register bits */
29#define AT45DB_READY (1<<7)
30#define AT45DB_CMP (1<<6)
31#define AT45DB_PROT (1<<1)
32#define AT45DB_POWEROF2 (1<<0)
33
34/* Opcodes */
35#define AT45DB_STATUS 0xD7 /* NB: this is a block erase command on most other chips(!). */
36#define AT45DB_DISABLE_PROTECT 0x3D, 0x2A, 0x7F, 0x9A
Stefan Taunerfdc4f7e2013-08-27 18:02:12 +000037#define AT45DB_READ_ARRAY 0xE8
Aidan Thorntondb4e87d2013-08-27 18:01:53 +000038#define AT45DB_READ_PROTECT 0x32
39#define AT45DB_READ_LOCKDOWN 0x35
40#define AT45DB_PAGE_ERASE 0x81
41#define AT45DB_BLOCK_ERASE 0x50
42#define AT45DB_SECTOR_ERASE 0x7C
43#define AT45DB_CHIP_ERASE 0xC7
44#define AT45DB_CHIP_ERASE_ADDR 0x94809A /* Magic address. See usage. */
45#define AT45DB_BUFFER1_WRITE 0x84
46#define AT45DB_BUFFER1_PAGE_PROGRAM 0x88
47/* Buffer 2 is unused yet.
48#define AT45DB_BUFFER2_WRITE 0x87
49#define AT45DB_BUFFER2_PAGE_PROGRAM 0x89
50*/
51
52static uint8_t at45db_read_status_register(struct flashctx *flash, uint8_t *status)
53{
54 static const uint8_t cmd[] = { AT45DB_STATUS };
55
56 int ret = spi_send_command(flash, sizeof(cmd), 1, cmd, status);
57 if (ret != 0)
58 msg_cerr("Reading the status register failed!\n");
59 else
60 msg_cspew("Status register: 0x%02x.\n", *status);
61 return ret;
62}
63
64int spi_disable_blockprotect_at45db(struct flashctx *flash)
65{
66 static const uint8_t cmd[4] = { AT45DB_DISABLE_PROTECT }; /* NB: 4 bytes magic number */
67 int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
68 if (ret != 0) {
69 msg_cerr("Sending disable lockdown failed!\n");
70 return ret;
71 }
72 uint8_t status;
73 ret = at45db_read_status_register(flash, &status);
74 if (ret != 0 || ((status & AT45DB_PROT) != 0)) {
75 msg_cerr("Disabling lockdown failed!\n");
76 return 1;
77 }
78
79 return 0;
80}
81
82static unsigned int at45db_get_sector_count(struct flashctx *flash)
83{
84 unsigned int i, j;
85 unsigned int cnt = 0;
86 for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
87 if (flash->chip->block_erasers[i].block_erase == &spi_erase_at45db_sector) {
88 for (j = 0; j < NUM_ERASEREGIONS; j++) {
89 cnt += flash->chip->block_erasers[i].eraseblocks[j].count;
90 }
91 }
92 }
93 msg_cspew("%s: number of sectors=%u\n", __func__, cnt);
94 return cnt;
95}
96
97/* Reads and prettyprints protection/lockdown registers.
98 * Some elegance of the printouts had to be cut down a bit to share this code. */
99static uint8_t at45db_prettyprint_protection_register(struct flashctx *flash, uint8_t opcode, const char *regname)
100{
101 const uint8_t cmd[] = { opcode, 0, 0, 0 };
102 /* The first two sectors share the first result byte. */
103 uint8_t buf[at45db_get_sector_count(flash) - 1];
104
105 int ret = spi_send_command(flash, sizeof(cmd), sizeof(buf), cmd, buf);
106 if (ret != 0) {
107 msg_cerr("Reading the %s register failed!\n", regname);
108 return ret;
109 }
110
111 unsigned int i;
112 for (i = 0; i < sizeof(buf); i++) {
113 if (buf[i] != 0x00)
114 break;
115 if (i == sizeof(buf) - 1) {
116 msg_cdbg("No Sector is %sed.\n", regname);
117 return 0;
118 }
119 }
120
121 /* TODO: print which addresses are mapped to (un)locked sectors. */
122 msg_cdbg("Sector 0a is %s%sed.\n", ((buf[0] & 0xC0) == 0x00) ? "un" : "", regname);
123 msg_cdbg("Sector 0b is %s%sed.\n", ((buf[0] & 0x30) == 0x00) ? "un" : "", regname);
124 for (i = 1; i < sizeof(buf); i++)
125 msg_cdbg("Sector %2u is %s%sed.\n", i, (buf[i] == 0x00) ? "un" : "", regname);
126
127 return 0;
128}
129
130/* bit 7: busy flag
131 * bit 6: memory/buffer compare result
132 * bit 5-2: density (encoding see below)
133 * bit 1: protection enabled (soft or hard)
134 * bit 0: "power of 2" page size indicator (e.g. 1 means 256B; 0 means 264B)
135 *
136 * 5-2 encoding: bit 2 is always 1, bits 3-5 encode the density as "2^(bits - 1)" in Mb e.g.:
137 * AT45DB161D 1011 16Mb */
138int spi_prettyprint_status_register_at45db(struct flashctx *flash)
139{
140 uint8_t status;
141 if (at45db_read_status_register(flash, &status) != 0) {
142 return 1;
143 }
144
Stefan Taunerfdc4f7e2013-08-27 18:02:12 +0000145 /* AT45DB321C does not support lockdown or a page size of a power of 2... */
146 const bool isAT45DB321C = (strcmp(flash->chip->name, "AT45DB321C") == 0);
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000147 msg_cdbg("Chip status register is 0x%02x\n", status);
148 msg_cdbg("Chip status register: Bit 7 / Ready is %sset\n", (status & AT45DB_READY) ? "" : "not ");
149 msg_cdbg("Chip status register: Bit 6 / Compare match is %sset\n", (status & AT45DB_CMP) ? "" : "not ");
150 spi_prettyprint_status_register_bit(status, 5);
151 spi_prettyprint_status_register_bit(status, 4);
152 spi_prettyprint_status_register_bit(status, 3);
153 spi_prettyprint_status_register_bit(status, 2);
154 const uint8_t dens = (status >> 3) & 0x7; /* Bit 2 is always 1, we use the other bits only */
155 msg_cdbg("Chip status register: Density is %u Mb\n", 1 << (dens - 1));
156 msg_cdbg("Chip status register: Bit 1 / Protection is %sset\n", (status & AT45DB_PROT) ? "" : "not ");
Stefan Taunerfdc4f7e2013-08-27 18:02:12 +0000157
158 if (isAT45DB321C)
159 spi_prettyprint_status_register_bit(status, 0);
160 else
161 msg_cdbg("Chip status register: Bit 0 / \"Power of 2\" is %sset\n",
162 (status & AT45DB_POWEROF2) ? "" : "not ");
163
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000164 if (status & AT45DB_PROT)
165 at45db_prettyprint_protection_register(flash, AT45DB_READ_PROTECT, "protect");
166
Stefan Taunerfdc4f7e2013-08-27 18:02:12 +0000167 if (!isAT45DB321C)
168 at45db_prettyprint_protection_register(flash, AT45DB_READ_LOCKDOWN, "lock");
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000169
170 return 0;
171}
172
173/* Probe function for AT45DB* chips that support multiple page sizes. */
174int probe_spi_at45db(struct flashctx *flash)
175{
176 uint8_t status;
177 struct flashchip *chip = flash->chip;
178
179 if (!probe_spi_rdid(flash))
180 return 0;
181
182 /* Some AT45DB* chips support two different page sizes each (e.g. 264 and 256 B). In order to tell which
183 * page size this chip has we need to read the status register. */
184 if (at45db_read_status_register(flash, &status) != 0)
185 return 0;
186
187 /* We assume sane power-of-2 page sizes and adjust the chip attributes in case this is not the case. */
188 if ((status & AT45DB_POWEROF2) == 0) {
189 chip->total_size = (chip->total_size / 32) * 33;
190 chip->page_size = (chip->page_size / 32) * 33;
191
192 unsigned int i, j;
193 for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
194 struct block_eraser *eraser = &chip->block_erasers[i];
195 for (j = 0; j < NUM_ERASEREGIONS; j++) {
196 eraser->eraseblocks[j].size = (eraser->eraseblocks[j].size / 32) * 33;
197 }
198 }
199 }
200
201 switch (chip->page_size) {
202 case 256: chip->gran = write_gran_256bytes; break;
203 case 264: chip->gran = write_gran_264bytes; break;
204 case 512: chip->gran = write_gran_512bytes; break;
205 case 528: chip->gran = write_gran_528bytes; break;
206 case 1024: chip->gran = write_gran_1024bytes; break;
207 case 1056: chip->gran = write_gran_1056bytes; break;
208 default:
209 msg_cerr("%s: unknown page size %d.\n", __func__, chip->page_size);
210 return 0;
211 }
212
213 msg_cdbg2("%s: total size %i kB, page size %i B\n", __func__, chip->total_size * 1024, chip->page_size);
214
215 return 1;
216}
217
218/* Returns the minimum number of bits needed to represent the given address.
219 * FIXME: use mind-blowing implementation.
220 * FIXME: move to utility module. */
221static uint32_t address_to_bits(uint32_t addr)
222{
223 unsigned int lzb = 0;
224 while (((1 << (31 - lzb)) & ~addr) != 0)
225 lzb++;
226 return 32 - lzb;
227}
228
229/* In case of non-power-of-two page sizes we need to convert the address flashrom uses to the address the
230 * DataFlash chips use. The latter uses a segmented address space where the page address is encoded in the
231 * more significant bits and the offset within the page is encoded in the less significant bits. The exact
232 * partition depends on the page size.
233 */
234static unsigned int at45db_convert_addr(unsigned int addr, unsigned int page_size)
235{
236 unsigned int page_bits = address_to_bits(page_size - 1);
237 unsigned int at45db_addr = ((addr / page_size) << page_bits) | (addr % page_size);
238 msg_cspew("%s: addr=0x%x, page_size=%u, page_bits=%u -> at45db_addr=0x%x\n",
239 __func__, addr, page_size, page_bits, at45db_addr);
240 return at45db_addr;
241}
242
243int spi_read_at45db(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
244{
245 const unsigned int page_size = flash->chip->page_size;
246 const unsigned int total_size = flash->chip->total_size * 1024;
247 if ((addr + len) > total_size) {
248 msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
249 __func__, addr, len, total_size);
250 return 1;
251 }
252
253 /* We have to split this up into chunks to fit within the programmer's read size limit, but those
254 * chunks can cross page boundaries. */
255 const unsigned int max_data_read = flash->pgm->spi.max_data_read;
256 const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
257 while (addr < len) {
258 unsigned int chunk = min(max_chunk, len);
259 int ret = spi_nbyte_read(flash, at45db_convert_addr(addr, page_size), buf + addr, chunk);
260 if (ret) {
261 msg_cerr("%s: error sending read command!\n", __func__);
262 return ret;
263 }
264 addr += chunk;
265 }
266
267 return 0;
268}
269
Stefan Taunerfdc4f7e2013-08-27 18:02:12 +0000270/* Legacy continuous read, used where spi_read_at45db() is not available.
271 * The first 4 (dummy) bytes read need to be discarded. */
272int spi_read_at45db_e8(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
273{
274 const unsigned int page_size = flash->chip->page_size;
275 const unsigned int total_size = flash->chip->total_size * 1024;
276 if ((addr + len) > total_size) {
277 msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
278 __func__, addr, len, total_size);
279 return 1;
280 }
281
282 /* We have to split this up into chunks to fit within the programmer's read size limit, but those
283 * chunks can cross page boundaries. */
284 const unsigned int max_data_read = flash->pgm->spi.max_data_read;
285 const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
286 while (addr < len) {
287 const unsigned int addr_at45 = at45db_convert_addr(addr, page_size);
288 const unsigned char cmd[] = {
289 AT45DB_READ_ARRAY,
290 (addr_at45 >> 16) & 0xff,
291 (addr_at45 >> 8) & 0xff,
292 (addr_at45 >> 0) & 0xff
293 };
294 /* We need to leave place for 4 dummy bytes and handle them explicitly. */
295 unsigned int chunk = min(max_chunk, len + 4);
296 uint8_t tmp[chunk];
297 int ret = spi_send_command(flash, sizeof(cmd), chunk, cmd, tmp);
298 if (ret) {
299 msg_cerr("%s: error sending read command!\n", __func__);
300 return ret;
301 }
302 /* Copy result without dummy bytes into buf and advance address counter respectively. */
303 memcpy(buf + addr, tmp + 4, chunk - 4);
304 addr += chunk - 4;
305 }
306 return 0;
307}
308
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000309/* Returns 0 when ready, 1 on errors and timeouts. */
310static int at45db_wait_ready (struct flashctx *flash, unsigned int us, unsigned int retries)
311{
312 while (true) {
313 uint8_t status;
314 int ret = at45db_read_status_register(flash, &status);
315 if ((status & AT45DB_READY) == AT45DB_READY)
316 return 0;
317 if (ret != 0 || retries-- == 0)
318 return 1;
319 programmer_delay(us);
320 }
321}
322
323static int at45db_erase(struct flashctx *flash, uint8_t opcode, unsigned int at45db_addr, unsigned int stepsize, unsigned int retries)
324{
325 const uint8_t cmd[] = {
326 opcode,
327 (at45db_addr >> 16) & 0xff,
328 (at45db_addr >> 8) & 0xff,
329 (at45db_addr >> 0) & 0xff
330 };
331
332 /* Send erase command. */
333 int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
334 if (ret != 0) {
335 msg_cerr("%s: error sending erase command!\n", __func__);
336 return ret;
337 }
338
339 /* Wait for completion. */
340 ret = at45db_wait_ready(flash, stepsize, retries);
341 if (ret != 0)
342 msg_cerr("%s: chip did not became ready again after sending the erase command!\n", __func__);
343
344 return ret;
345}
346
347int spi_erase_at45db_page(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
348{
349 const unsigned int page_size = flash->chip->page_size;
350 const unsigned int total_size = flash->chip->total_size * 1024;
351
352 if ((addr % page_size) != 0 || (blocklen % page_size) != 0) {
353 msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
354 return 1;
355 }
356
357 if ((addr + blocklen) > total_size) {
358 msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
359 __func__, addr, blocklen, total_size);
360 return 1;
361 }
362
363 /* Needs typically about 35 ms for completion, so let's wait 100 ms in 500 us steps. */
364 return at45db_erase(flash, AT45DB_PAGE_ERASE, at45db_convert_addr(addr, page_size), 500, 200);
365}
366
367int spi_erase_at45db_block(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
368{
369 const unsigned int page_size = flash->chip->page_size;
370 const unsigned int total_size = flash->chip->total_size * 1024;
371
372 if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check blocks not pages
373 msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
374 return 1;
375 }
376
377 if ((addr + blocklen) > total_size) {
378 msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
379 __func__, addr, blocklen, total_size);
380 return 1;
381 }
382
383 /* Needs typically between 20 and 100 ms for completion, so let's wait 300 ms in 1 ms steps. */
384 return at45db_erase(flash, AT45DB_BLOCK_ERASE, at45db_convert_addr(addr, page_size), 1000, 300);
385}
386
387int spi_erase_at45db_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
388{
389 const unsigned int page_size = flash->chip->page_size;
390 const unsigned int total_size = flash->chip->total_size * 1024;
391
392 if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check sectors not pages
393 msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
394 return 1;
395 }
396
397 if ((addr + blocklen) > total_size) {
398 msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
399 __func__, addr, blocklen, total_size);
400 return 1;
401 }
402
403 /* Needs typically about 5 s for completion, so let's wait 20 seconds in 200 ms steps. */
404 return at45db_erase(flash, AT45DB_SECTOR_ERASE, at45db_convert_addr(addr, page_size), 200000, 100);
405}
406
407int spi_erase_at45db_chip(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
408{
409 const unsigned int total_size = flash->chip->total_size * 1024;
410
411 if ((addr + blocklen) > total_size) {
412 msg_cerr("%s: tried to erase beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
413 __func__, addr, blocklen, total_size);
414 return 1;
415 }
416
417 /* Needs typically from about 5 to over 60 s for completion, so let's wait 100 s in 500 ms steps.
418 * NB: the address is not a real address but a magic number. This hack allows to share code. */
419 return at45db_erase(flash, AT45DB_CHIP_ERASE, AT45DB_CHIP_ERASE_ADDR, 500000, 200);
420}
421
Stefan Tauner1dd5d3a2013-08-27 18:02:19 +0000422/* This one is really special and works only for AT45CS1282. It uses two different opcodes depending on the
423 * address and has an asymmetric layout. */
424int spi_erase_at45cs_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
425{
426 const unsigned int page_size = flash->chip->page_size;
427 const unsigned int total_size = flash->chip->total_size * 1024;
428 const struct block_eraser be = flash->chip->block_erasers[0];
429 const unsigned int sec_0a_top = be.eraseblocks[0].size;
430 const unsigned int sec_0b_top = be.eraseblocks[0].size + be.eraseblocks[1].size;
431
432 if ((addr + blocklen) > total_size) {
433 msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
434 __func__, addr, blocklen, total_size);
435 return 1;
436 }
437
438 bool partial_range = false;
439 uint8_t opcode = 0x7C; /* Used for all but sector 0a. */
440 if (addr < sec_0a_top) {
441 opcode = 0x50;
442 /* One single sector of 8 pages at address 0. */
443 if (addr != 0 || blocklen != (8 * page_size))
444 partial_range = true;
445 } else if (addr < sec_0b_top) {
446 /* One single sector of 248 pages adjacent to the first. */
447 if (addr != sec_0a_top || blocklen != (248 * page_size))
448 partial_range = true;
449 } else {
450 /* The rest is filled by 63 aligned sectors of 256 pages. */
451 if ((addr % (256 * page_size)) != 0 || (blocklen % (256 * page_size)) != 0)
452 partial_range = true;
453 }
454 if (partial_range) {
455 msg_cerr("%s: cannot erase partial sectors: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
456 return 1;
457 }
458
459 /* Needs up to 4 s for completion, so let's wait 20 seconds in 200 ms steps. */
460 return at45db_erase(flash, opcode, at45db_convert_addr(addr, page_size), 200000, 100);
461}
462
Mark Marshallf20b7be2014-05-09 21:16:21 +0000463static int at45db_fill_buffer1(struct flashctx *flash, const uint8_t *bytes, unsigned int off, unsigned int len)
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000464{
465 const unsigned int page_size = flash->chip->page_size;
466 if ((off + len) > page_size) {
467 msg_cerr("Tried to write %u bytes at offset %u into a buffer of only %u B.\n",
468 len, off, page_size);
469 return 1;
470 }
471
472 /* Create a suitable buffer to store opcode, address and data chunks for buffer1. */
473 const unsigned int max_data_write = flash->pgm->spi.max_data_write;
474 const unsigned int max_chunk = (max_data_write > 0 && max_data_write <= page_size) ?
475 max_data_write : page_size;
476 uint8_t buf[4 + max_chunk];
477
478 buf[0] = AT45DB_BUFFER1_WRITE;
479 while (off < page_size) {
480 unsigned int cur_chunk = min(max_chunk, page_size - off);
481 buf[1] = (off >> 16) & 0xff;
482 buf[2] = (off >> 8) & 0xff;
483 buf[3] = (off >> 0) & 0xff;
484 memcpy(&buf[4], bytes + off, cur_chunk);
485 int ret = spi_send_command(flash, 4 + cur_chunk, 0, buf, NULL);
486 if (ret != 0) {
487 msg_cerr("%s: error sending buffer write!\n", __func__);
488 return ret;
489 }
490 off += cur_chunk;
491 }
492 return 0;
493}
494
495static int at45db_commit_buffer1(struct flashctx *flash, unsigned int at45db_addr)
496{
497 const uint8_t cmd[] = {
498 AT45DB_BUFFER1_PAGE_PROGRAM,
499 (at45db_addr >> 16) & 0xff,
500 (at45db_addr >> 8) & 0xff,
501 (at45db_addr >> 0) & 0xff
502 };
503
504 /* Send buffer to device. */
505 int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
506 if (ret != 0) {
507 msg_cerr("%s: error sending buffer to main memory command!\n", __func__);
508 return ret;
509 }
510
511 /* Wait for completion (typically a few ms). */
512 ret = at45db_wait_ready(flash, 250, 200); // 50 ms
513 if (ret != 0) {
514 msg_cerr("%s: chip did not became ready again!\n", __func__);
515 return ret;
516 }
517
518 return 0;
519}
520
Mark Marshallf20b7be2014-05-09 21:16:21 +0000521static int at45db_program_page(struct flashctx *flash, const uint8_t *buf, unsigned int at45db_addr)
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000522{
523 int ret = at45db_fill_buffer1(flash, buf, 0, flash->chip->page_size);
524 if (ret != 0) {
525 msg_cerr("%s: filling the buffer failed!\n", __func__);
526 return ret;
527 }
528
529 ret = at45db_commit_buffer1(flash, at45db_addr);
530 if (ret != 0) {
531 msg_cerr("%s: committing page failed!\n", __func__);
532 return ret;
533 }
534
535 return 0;
536}
537
Mark Marshallf20b7be2014-05-09 21:16:21 +0000538int spi_write_at45db(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
Aidan Thorntondb4e87d2013-08-27 18:01:53 +0000539{
540 const unsigned int page_size = flash->chip->page_size;
541 const unsigned int total_size = flash->chip->total_size;
542
543 if ((start % page_size) != 0 || (len % page_size) != 0) {
544 msg_cerr("%s: cannot write partial pages: start=%u, len=%u\n", __func__, start, len);
545 return 1;
546 }
547
548 if ((start + len) > (total_size * 1024)) {
549 msg_cerr("%s: tried to write beyond flash boundary: start=%u, len=%u, size=%u\n",
550 __func__, start, len, total_size);
551 return 1;
552 }
553
554 unsigned int i;
555 for (i = 0; i < len; i += page_size) {
556 if (at45db_program_page(flash, buf + i, at45db_convert_addr(start + i, page_size)) != 0) {
557 msg_cerr("Writing page %u failed!\n", i);
558 return 1;
559 }
560 }
561 return 0;
562}