blob: 1dd2e0ccf0512ad2c01cabf9d59c3f9599604e8a [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Paul Fox <pgf@laptop.org>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if CONFIG_FT2232_SPI == 1
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "flash.h"
#include "chipdrivers.h"
#include "spi.h"
#include <ftdi.h>
/*
* The 'H' chips can run internally at either 12MHz or 60MHz.
* The non-H chips can only run at 12MHz.
*/
#define CLOCK_5X 1
/*
* In either case, the divisor is a simple integer clock divider.
* If CLOCK_5X is set, this divisor divides 30MHz, else it divides 6MHz.
*/
#define DIVIDE_BY 3 /* e.g. '3' will give either 10MHz or 2MHz SPI clock. */
#define BITMODE_BITBANG_NORMAL 1
#define BITMODE_BITBANG_SPI 2
static struct ftdi_context ftdic_context;
static int send_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size)
{
int r;
r = ftdi_write_data(ftdic, (unsigned char *) buf, size);
if (r < 0) {
msg_perr("ftdi_write_data: %d, %s\n", r,
ftdi_get_error_string(ftdic));
return 1;
}
return 0;
}
static int get_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size)
{
int r;
r = ftdi_read_data(ftdic, (unsigned char *) buf, size);
if (r < 0) {
msg_perr("ftdi_read_data: %d, %s\n", r,
ftdi_get_error_string(ftdic));
return 1;
}
return 0;
}
int ft2232_spi_init(void)
{
int f;
struct ftdi_context *ftdic = &ftdic_context;
unsigned char buf[512];
int ft2232_type = FTDI_FT4232H;
enum ftdi_interface ft2232_interface = INTERFACE_B;
char *arg;
arg = extract_programmer_param("type");
if (arg) {
if (!strcasecmp(arg, "2232H"))
ft2232_type = FTDI_FT2232H;
else if (!strcasecmp(arg, "4232H"))
ft2232_type = FTDI_FT4232H;
else {
msg_perr("Error: Invalid device type specified.\n");
free(arg);
return 1;
}
}
free(arg);
arg = extract_programmer_param("port");
if (arg) {
switch (toupper(*arg)) {
case 'A':
ft2232_interface = INTERFACE_A;
break;
case 'B':
ft2232_interface = INTERFACE_B;
break;
default:
msg_perr("Error: Invalid port/interface specified.\n");
free(arg);
return 1;
}
}
free(arg);
msg_pdbg("Using device type %s ",
(ft2232_type == FTDI_FT2232H) ? "2232H" : "4232H");
msg_pdbg("interface %s\n",
(ft2232_interface == INTERFACE_A) ? "A" : "B");
if (ftdi_init(ftdic) < 0) {
msg_perr("ftdi_init failed\n");
return EXIT_FAILURE; // TODO
}
f = ftdi_usb_open(ftdic, 0x0403, ft2232_type);
if (f < 0 && f != -5) {
msg_perr("Unable to open FTDI device: %d (%s)\n", f,
ftdi_get_error_string(ftdic));
exit(-1); // TODO
}
if (ftdi_set_interface(ftdic, ft2232_interface) < 0) {
msg_perr("Unable to select interface: %s\n",
ftdic->error_str);
}
if (ftdi_usb_reset(ftdic) < 0) {
msg_perr("Unable to reset FTDI device\n");
}
if (ftdi_set_latency_timer(ftdic, 2) < 0) {
msg_perr("Unable to set latency timer\n");
}
if (ftdi_write_data_set_chunksize(ftdic, 512)) {
msg_perr("Unable to set chunk size\n");
}
if (ftdi_set_bitmode(ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) {
msg_perr("Unable to set bitmode to SPI\n");
}
#if CLOCK_5X
msg_pdbg("Disable divide-by-5 front stage\n");
buf[0] = 0x8a; /* Disable divide-by-5. */
if (send_buf(ftdic, buf, 1))
return -1;
#define MPSSE_CLK 60.0
#else
#define MPSSE_CLK 12.0
#endif
msg_pdbg("Set clock divisor\n");
buf[0] = 0x86; /* command "set divisor" */
/* valueL/valueH are (desired_divisor - 1) */
buf[1] = (DIVIDE_BY - 1) & 0xff;
buf[2] = ((DIVIDE_BY - 1) >> 8) & 0xff;
if (send_buf(ftdic, buf, 3))
return -1;
msg_pdbg("SPI clock is %fMHz\n",
(double)(MPSSE_CLK / (((DIVIDE_BY - 1) + 1) * 2)));
/* Disconnect TDI/DO to TDO/DI for loopback. */
msg_pdbg("No loopback of TDI/DO TDO/DI\n");
buf[0] = 0x85;
if (send_buf(ftdic, buf, 1))
return -1;
msg_pdbg("Set data bits\n");
/* Set data bits low-byte command:
* value: 0x08 CS=high, DI=low, DO=low, SK=low
* dir: 0x0b CS=output, DI=input, DO=output, SK=output
*/
#define CS_BIT 0x08
buf[0] = SET_BITS_LOW;
buf[1] = CS_BIT;
buf[2] = 0x0b;
if (send_buf(ftdic, buf, 3))
return -1;
// msg_pdbg("\nft2232 chosen\n");
buses_supported = CHIP_BUSTYPE_SPI;
spi_controller = SPI_CONTROLLER_FT2232;
return 0;
}
int ft2232_spi_send_command(unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
struct ftdi_context *ftdic = &ftdic_context;
static unsigned char *buf = NULL;
/* failed is special. We use bitwise ops, but it is essentially bool. */
int i = 0, ret = 0, failed = 0;
int bufsize;
static int oldbufsize = 0;
if (writecnt > 65536 || readcnt > 65536)
return SPI_INVALID_LENGTH;
/* buf is not used for the response from the chip. */
bufsize = max(writecnt + 9, 260 + 9);
/* Never shrink. realloc() calls are expensive. */
if (bufsize > oldbufsize) {
buf = realloc(buf, bufsize);
if (!buf) {
msg_perr("Out of memory!\n");
exit(1);
}
oldbufsize = bufsize;
}
/*
* Minimize USB transfers by packing as many commands as possible
* together. If we're not expecting to read, we can assert CS#, write,
* and deassert CS# all in one shot. If reading, we do three separate
* operations.
*/
msg_pspew("Assert CS#\n");
buf[i++] = SET_BITS_LOW;
buf[i++] = 0 & ~CS_BIT; /* assertive */
buf[i++] = 0x0b;
if (writecnt) {
buf[i++] = 0x11;
buf[i++] = (writecnt - 1) & 0xff;
buf[i++] = ((writecnt - 1) >> 8) & 0xff;
memcpy(buf + i, writearr, writecnt);
i += writecnt;
}
/*
* Optionally terminate this batch of commands with a
* read command, then do the fetch of the results.
*/
if (readcnt) {
buf[i++] = 0x20;
buf[i++] = (readcnt - 1) & 0xff;
buf[i++] = ((readcnt - 1) >> 8) & 0xff;
ret = send_buf(ftdic, buf, i);
failed = ret;
/* We can't abort here, we still have to deassert CS#. */
if (ret)
msg_perr("send_buf failed before read: %i\n",
ret);
i = 0;
if (ret == 0) {
/*
* FIXME: This is unreliable. There's no guarantee that
* we read the response directly after sending the read
* command. We may be scheduled out etc.
*/
ret = get_buf(ftdic, readarr, readcnt);
failed |= ret;
/* We can't abort here either. */
if (ret)
msg_perr("get_buf failed: %i\n", ret);
}
}
msg_pspew("De-assert CS#\n");
buf[i++] = SET_BITS_LOW;
buf[i++] = CS_BIT;
buf[i++] = 0x0b;
ret = send_buf(ftdic, buf, i);
failed |= ret;
if (ret)
msg_perr("send_buf failed at end: %i\n", ret);
return failed ? -1 : 0;
}
int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len)
{
/* Maximum read length is 64k bytes. */
return spi_read_chunked(flash, buf, start, len, 64 * 1024);
}
int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf)
{
int total_size = 1024 * flash->total_size;
spi_disable_blockprotect();
/* Erase first. */
msg_pinfo("Erasing flash before programming... ");
if (erase_flash(flash)) {
msg_perr("ERASE FAILED!\n");
return -1;
}
msg_pinfo("done.\n");
msg_pdbg("total_size is %d\n", total_size);
return spi_write_chunked(flash, buf, 0, total_size, 256);
}
#endif