blob: f1a61656aea58cdde132be81c0ab4bdacb6d6c83 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2004 Tyan Corp <yhlu@tyan.com>
* Copyright (C) 2005-2008 coresystems GmbH
* Copyright (C) 2008,2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <sys/types.h>
#ifndef __LIBPAYLOAD__
#include <fcntl.h>
#include <sys/stat.h>
#endif
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <getopt.h>
#if HAVE_UTSNAME == 1
#include <sys/utsname.h>
#endif
#include "flash.h"
#include "flashchips.h"
#include "programmer.h"
const char flashrom_version[] = FLASHROM_VERSION;
char *chip_to_probe = NULL;
int verbose = 0;
static enum programmer programmer = PROGRAMMER_INVALID;
static char *programmer_param = NULL;
/*
* Programmers supporting multiple buses can have differing size limits on
* each bus. Store the limits for each bus in a common struct.
*/
struct decode_sizes max_rom_decode;
/* If nonzero, used as the start address of bottom-aligned flash. */
unsigned long flashbase;
/* Is writing allowed with this programmer? */
int programmer_may_write;
const struct programmer_entry programmer_table[] = {
#if CONFIG_INTERNAL == 1
{
.name = "internal",
.init = internal_init,
.map_flash_region = physmap,
.unmap_flash_region = physunmap,
.delay = internal_delay,
},
#endif
#if CONFIG_DUMMY == 1
{
.name = "dummy",
.init = dummy_init,
.map_flash_region = dummy_map,
.unmap_flash_region = dummy_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NIC3COM == 1
{
.name = "nic3com",
.init = nic3com_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICREALTEK == 1
{
/* This programmer works for Realtek RTL8139 and SMC 1211. */
.name = "nicrealtek",
//.name = "nicsmc1211",
.init = nicrealtek_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICNATSEMI == 1
{
.name = "nicnatsemi",
.init = nicnatsemi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_GFXNVIDIA == 1
{
.name = "gfxnvidia",
.init = gfxnvidia_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_DRKAISER == 1
{
.name = "drkaiser",
.init = drkaiser_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_SATASII == 1
{
.name = "satasii",
.init = satasii_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_ATAHPT == 1
{
.name = "atahpt",
.init = atahpt_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_FT2232_SPI == 1
{
.name = "ft2232_spi",
.init = ft2232_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_SERPROG == 1
{
.name = "serprog",
.init = serprog_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = serprog_delay,
},
#endif
#if CONFIG_BUSPIRATE_SPI == 1
{
.name = "buspirate_spi",
.init = buspirate_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_DEDIPROG == 1
{
.name = "dediprog",
.init = dediprog_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_RAYER_SPI == 1
{
.name = "rayer_spi",
.init = rayer_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICINTEL == 1
{
.name = "nicintel",
.init = nicintel_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICINTEL_SPI == 1
{
.name = "nicintel_spi",
.init = nicintel_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_OGP_SPI == 1
{
.name = "ogp_spi",
.init = ogp_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_SATAMV == 1
{
.name = "satamv",
.init = satamv_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_LINUX_SPI == 1
{
.name = "linux_spi",
.init = linux_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
{}, /* This entry corresponds to PROGRAMMER_INVALID. */
};
#define SHUTDOWN_MAXFN 32
static int shutdown_fn_count = 0;
struct shutdown_func_data {
int (*func) (void *data);
void *data;
} static shutdown_fn[SHUTDOWN_MAXFN];
/* Initialize to 0 to make sure nobody registers a shutdown function before
* programmer init.
*/
static int may_register_shutdown = 0;
static int check_block_eraser(const struct flashctx *flash, int k, int log);
/* Register a function to be executed on programmer shutdown.
* The advantage over atexit() is that you can supply a void pointer which will
* be used as parameter to the registered function upon programmer shutdown.
* This pointer can point to arbitrary data used by said function, e.g. undo
* information for GPIO settings etc. If unneeded, set data=NULL.
* Please note that the first (void *data) belongs to the function signature of
* the function passed as first parameter.
*/
int register_shutdown(int (*function) (void *data), void *data)
{
if (shutdown_fn_count >= SHUTDOWN_MAXFN) {
msg_perr("Tried to register more than %i shutdown functions.\n",
SHUTDOWN_MAXFN);
return 1;
}
if (!may_register_shutdown) {
msg_perr("Tried to register a shutdown function before "
"programmer init.\n");
return 1;
}
shutdown_fn[shutdown_fn_count].func = function;
shutdown_fn[shutdown_fn_count].data = data;
shutdown_fn_count++;
return 0;
}
int programmer_init(enum programmer prog, char *param)
{
int ret;
if (prog >= PROGRAMMER_INVALID) {
msg_perr("Invalid programmer specified!\n");
return -1;
}
programmer = prog;
/* Initialize all programmer specific data. */
/* Default to unlimited decode sizes. */
max_rom_decode = (const struct decode_sizes) {
.parallel = 0xffffffff,
.lpc = 0xffffffff,
.fwh = 0xffffffff,
.spi = 0xffffffff,
};
/* Default to top aligned flash at 4 GB. */
flashbase = 0;
/* Registering shutdown functions is now allowed. */
may_register_shutdown = 1;
/* Default to allowing writes. Broken programmers set this to 0. */
programmer_may_write = 1;
programmer_param = param;
msg_pdbg("Initializing %s programmer\n",
programmer_table[programmer].name);
ret = programmer_table[programmer].init();
if (programmer_param && strlen(programmer_param)) {
msg_perr("Unhandled programmer parameters: %s\n",
programmer_param);
/* Do not error out here, the init itself was successful. */
}
return ret;
}
int programmer_shutdown(void)
{
int ret = 0;
/* Registering shutdown functions is no longer allowed. */
may_register_shutdown = 0;
while (shutdown_fn_count > 0) {
int i = --shutdown_fn_count;
ret |= shutdown_fn[i].func(shutdown_fn[i].data);
}
return ret;
}
void *programmer_map_flash_region(const char *descr, unsigned long phys_addr,
size_t len)
{
return programmer_table[programmer].map_flash_region(descr,
phys_addr, len);
}
void programmer_unmap_flash_region(void *virt_addr, size_t len)
{
programmer_table[programmer].unmap_flash_region(virt_addr, len);
}
void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr)
{
flash->pgm->par.chip_writeb(flash, val, addr);
}
void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr)
{
flash->pgm->par.chip_writew(flash, val, addr);
}
void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr)
{
flash->pgm->par.chip_writel(flash, val, addr);
}
void chip_writen(const struct flashctx *flash, uint8_t *buf, chipaddr addr,
size_t len)
{
flash->pgm->par.chip_writen(flash, buf, addr, len);
}
uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr)
{
return flash->pgm->par.chip_readb(flash, addr);
}
uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr)
{
return flash->pgm->par.chip_readw(flash, addr);
}
uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr)
{
return flash->pgm->par.chip_readl(flash, addr);
}
void chip_readn(const struct flashctx *flash, uint8_t *buf, chipaddr addr,
size_t len)
{
flash->pgm->par.chip_readn(flash, buf, addr, len);
}
void programmer_delay(int usecs)
{
programmer_table[programmer].delay(usecs);
}
void map_flash_registers(struct flashctx *flash)
{
size_t size = flash->total_size * 1024;
/* Flash registers live 4 MByte below the flash. */
/* FIXME: This is incorrect for nonstandard flashbase. */
flash->virtual_registers = (chipaddr)programmer_map_flash_region("flash chip registers", (0xFFFFFFFF - 0x400000 - size + 1), size);
}
int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start,
int unsigned len)
{
chip_readn(flash, buf, flash->virtual_memory + start, len);
return 0;
}
int min(int a, int b)
{
return (a < b) ? a : b;
}
int max(int a, int b)
{
return (a > b) ? a : b;
}
int bitcount(unsigned long a)
{
int i = 0;
for (; a != 0; a >>= 1)
if (a & 1)
i++;
return i;
}
void tolower_string(char *str)
{
for (; *str != '\0'; str++)
*str = (char)tolower((unsigned char)*str);
}
char *strcat_realloc(char *dest, const char *src)
{
dest = realloc(dest, strlen(dest) + strlen(src) + 1);
if (!dest) {
msg_gerr("Out of memory!\n");
return NULL;
}
strcat(dest, src);
return dest;
}
/* This is a somewhat hacked function similar in some ways to strtok().
* It will look for needle with a subsequent '=' in haystack, return a copy of
* needle and remove everything from the first occurrence of needle to the next
* delimiter from haystack.
*/
char *extract_param(char **haystack, const char *needle, const char *delim)
{
char *param_pos, *opt_pos, *rest;
char *opt = NULL;
int optlen;
int needlelen;
needlelen = strlen(needle);
if (!needlelen) {
msg_gerr("%s: empty needle! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
return NULL;
}
/* No programmer parameters given. */
if (*haystack == NULL)
return NULL;
param_pos = strstr(*haystack, needle);
do {
if (!param_pos)
return NULL;
/* Needle followed by '='? */
if (param_pos[needlelen] == '=') {
/* Beginning of the string? */
if (param_pos == *haystack)
break;
/* After a delimiter? */
if (strchr(delim, *(param_pos - 1)))
break;
}
/* Continue searching. */
param_pos++;
param_pos = strstr(param_pos, needle);
} while (1);
if (param_pos) {
/* Get the string after needle and '='. */
opt_pos = param_pos + needlelen + 1;
optlen = strcspn(opt_pos, delim);
/* Return an empty string if the parameter was empty. */
opt = malloc(optlen + 1);
if (!opt) {
msg_gerr("Out of memory!\n");
exit(1);
}
strncpy(opt, opt_pos, optlen);
opt[optlen] = '\0';
rest = opt_pos + optlen;
/* Skip all delimiters after the current parameter. */
rest += strspn(rest, delim);
memmove(param_pos, rest, strlen(rest) + 1);
/* We could shrink haystack, but the effort is not worth it. */
}
return opt;
}
char *extract_programmer_param(const char *param_name)
{
return extract_param(&programmer_param, param_name, ",");
}
/* Returns the number of well-defined erasers for a chip. */
static unsigned int count_usable_erasers(const struct flashctx *flash)
{
unsigned int usable_erasefunctions = 0;
int k;
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
if (!check_block_eraser(flash, k, 0))
usable_erasefunctions++;
}
return usable_erasefunctions;
}
/* start is an offset to the base address of the flash chip */
int check_erased_range(struct flashctx *flash, unsigned int start,
unsigned int len)
{
int ret;
uint8_t *cmpbuf = malloc(len);
if (!cmpbuf) {
msg_gerr("Could not allocate memory!\n");
exit(1);
}
memset(cmpbuf, 0xff, len);
ret = verify_range(flash, cmpbuf, start, len, "ERASE");
free(cmpbuf);
return ret;
}
/*
* @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the
* flash content at location start
* @start offset to the base address of the flash chip
* @len length of the verified area
* @message string to print in the "FAILED" message
* @return 0 for success, -1 for failure
*/
int verify_range(struct flashctx *flash, uint8_t *cmpbuf, unsigned int start,
unsigned int len, const char *message)
{
unsigned int i;
uint8_t *readbuf = malloc(len);
int ret = 0, failcount = 0;
if (!len)
goto out_free;
if (!flash->read) {
msg_cerr("ERROR: flashrom has no read function for this flash chip.\n");
return 1;
}
if (!readbuf) {
msg_gerr("Could not allocate memory!\n");
exit(1);
}
if (start + len > flash->total_size * 1024) {
msg_gerr("Error: %s called with start 0x%x + len 0x%x >"
" total_size 0x%x\n", __func__, start, len,
flash->total_size * 1024);
ret = -1;
goto out_free;
}
if (!message)
message = "VERIFY";
ret = flash->read(flash, readbuf, start, len);
if (ret) {
msg_gerr("Verification impossible because read failed "
"at 0x%x (len 0x%x)\n", start, len);
return ret;
}
for (i = 0; i < len; i++) {
if (cmpbuf[i] != readbuf[i]) {
/* Only print the first failure. */
if (!failcount++)
msg_cerr("%s FAILED at 0x%08x! "
"Expected=0x%02x, Read=0x%02x,",
message, start + i, cmpbuf[i],
readbuf[i]);
}
}
if (failcount) {
msg_cerr(" failed byte count from 0x%08x-0x%08x: 0x%x\n",
start, start + len - 1, failcount);
ret = -1;
}
out_free:
free(readbuf);
return ret;
}
/*
* Check if the buffer @have can be programmed to the content of @want without
* erasing. This is only possible if all chunks of size @gran are either kept
* as-is or changed from an all-ones state to any other state.
*
* The following write granularities (enum @gran) are known:
* - 1 bit. Each bit can be cleared individually.
* - 1 byte. A byte can be written once. Further writes to an already written
* byte cause the contents to be either undefined or to stay unchanged.
* - 128 bytes. If less than 128 bytes are written, the rest will be
* erased. Each write to a 128-byte region will trigger an automatic erase
* before anything is written. Very uncommon behaviour and unsupported by
* this function.
* - 256 bytes. If less than 256 bytes are written, the contents of the
* unwritten bytes are undefined.
* Warning: This function assumes that @have and @want point to naturally
* aligned regions.
*
* @have buffer with current content
* @want buffer with desired content
* @len length of the checked area
* @gran write granularity (enum, not count)
* @return 0 if no erase is needed, 1 otherwise
*/
int need_erase(uint8_t *have, uint8_t *want, unsigned int len, enum write_granularity gran)
{
int result = 0;
unsigned int i, j, limit;
switch (gran) {
case write_gran_1bit:
for (i = 0; i < len; i++)
if ((have[i] & want[i]) != want[i]) {
result = 1;
break;
}
break;
case write_gran_1byte:
for (i = 0; i < len; i++)
if ((have[i] != want[i]) && (have[i] != 0xff)) {
result = 1;
break;
}
break;
case write_gran_256bytes:
for (j = 0; j < len / 256; j++) {
limit = min (256, len - j * 256);
/* Are 'have' and 'want' identical? */
if (!memcmp(have + j * 256, want + j * 256, limit))
continue;
/* have needs to be in erased state. */
for (i = 0; i < limit; i++)
if (have[j * 256 + i] != 0xff) {
result = 1;
break;
}
if (result)
break;
}
break;
default:
msg_cerr("%s: Unsupported granularity! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
}
return result;
}
/**
* Check if the buffer @have needs to be programmed to get the content of @want.
* If yes, return 1 and fill in first_start with the start address of the
* write operation and first_len with the length of the first to-be-written
* chunk. If not, return 0 and leave first_start and first_len undefined.
*
* Warning: This function assumes that @have and @want point to naturally
* aligned regions.
*
* @have buffer with current content
* @want buffer with desired content
* @len length of the checked area
* @gran write granularity (enum, not count)
* @first_start offset of the first byte which needs to be written (passed in
* value is increased by the offset of the first needed write
* relative to have/want or unchanged if no write is needed)
* @return length of the first contiguous area which needs to be written
* 0 if no write is needed
*
* FIXME: This function needs a parameter which tells it about coalescing
* in relation to the max write length of the programmer and the max write
* length of the chip.
*/
static unsigned int get_next_write(uint8_t *have, uint8_t *want, unsigned int len,
unsigned int *first_start,
enum write_granularity gran)
{
int need_write = 0;
unsigned int rel_start = 0, first_len = 0;
unsigned int i, limit, stride;
switch (gran) {
case write_gran_1bit:
case write_gran_1byte:
stride = 1;
break;
case write_gran_256bytes:
stride = 256;
break;
default:
msg_cerr("%s: Unsupported granularity! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
/* Claim that no write was needed. A write with unknown
* granularity is too dangerous to try.
*/
return 0;
}
for (i = 0; i < len / stride; i++) {
limit = min(stride, len - i * stride);
/* Are 'have' and 'want' identical? */
if (memcmp(have + i * stride, want + i * stride, limit)) {
if (!need_write) {
/* First location where have and want differ. */
need_write = 1;
rel_start = i * stride;
}
} else {
if (need_write) {
/* First location where have and want
* do not differ anymore.
*/
break;
}
}
}
if (need_write)
first_len = min(i * stride - rel_start, len);
*first_start += rel_start;
return first_len;
}
/* This function generates various test patterns useful for testing controller
* and chip communication as well as chip behaviour.
*
* If a byte can be written multiple times, each time keeping 0-bits at 0
* and changing 1-bits to 0 if the new value for that bit is 0, the effect
* is essentially an AND operation. That's also the reason why this function
* provides the result of AND between various patterns.
*
* Below is a list of patterns (and their block length).
* Pattern 0 is 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5 (16 Bytes)
* Pattern 1 is 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa (16 Bytes)
* Pattern 2 is 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f (16 Bytes)
* Pattern 3 is a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af (16 Bytes)
* Pattern 4 is 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 (16 Bytes)
* Pattern 5 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f (16 Bytes)
* Pattern 6 is 00 (1 Byte)
* Pattern 7 is ff (1 Byte)
* Patterns 0-7 have a big-endian block number in the last 2 bytes of each 256
* byte block.
*
* Pattern 8 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11... (256 B)
* Pattern 9 is ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef ee... (256 B)
* Pattern 10 is 00 00 00 01 00 02 00 03 00 04... (128 kB big-endian counter)
* Pattern 11 is ff ff ff fe ff fd ff fc ff fb... (128 kB big-endian downwards)
* Pattern 12 is 00 (1 Byte)
* Pattern 13 is ff (1 Byte)
* Patterns 8-13 have no block number.
*
* Patterns 0-3 are created to detect and efficiently diagnose communication
* slips like missed bits or bytes and their repetitive nature gives good visual
* cues to the person inspecting the results. In addition, the following holds:
* AND Pattern 0/1 == Pattern 4
* AND Pattern 2/3 == Pattern 5
* AND Pattern 0/1/2/3 == AND Pattern 4/5 == Pattern 6
* A weakness of pattern 0-5 is the inability to detect swaps/copies between
* any two 16-byte blocks except for the last 16-byte block in a 256-byte bloc.
* They work perfectly for detecting any swaps/aliasing of blocks >= 256 bytes.
* 0x5 and 0xa were picked because they are 0101 and 1010 binary.
* Patterns 8-9 are best for detecting swaps/aliasing of blocks < 256 bytes.
* Besides that, they provide for bit testing of the last two bytes of every
* 256 byte block which contains the block number for patterns 0-6.
* Patterns 10-11 are special purpose for detecting subblock aliasing with
* block sizes >256 bytes (some Dataflash chips etc.)
* AND Pattern 8/9 == Pattern 12
* AND Pattern 10/11 == Pattern 12
* Pattern 13 is the completely erased state.
* None of the patterns can detect aliasing at boundaries which are a multiple
* of 16 MBytes (but such chips do not exist anyway for Parallel/LPC/FWH/SPI).
*/
int generate_testpattern(uint8_t *buf, uint32_t size, int variant)
{
int i;
if (!buf) {
msg_gerr("Invalid buffer!\n");
return 1;
}
switch (variant) {
case 0:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4 | 0x5;
break;
case 1:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4 | 0xa;
break;
case 2:
for (i = 0; i < size; i++)
buf[i] = 0x50 | (i & 0xf);
break;
case 3:
for (i = 0; i < size; i++)
buf[i] = 0xa0 | (i & 0xf);
break;
case 4:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4;
break;
case 5:
for (i = 0; i < size; i++)
buf[i] = i & 0xf;
break;
case 6:
memset(buf, 0x00, size);
break;
case 7:
memset(buf, 0xff, size);
break;
case 8:
for (i = 0; i < size; i++)
buf[i] = i & 0xff;
break;
case 9:
for (i = 0; i < size; i++)
buf[i] = ~(i & 0xff);
break;
case 10:
for (i = 0; i < size % 2; i++) {
buf[i * 2] = (i >> 8) & 0xff;
buf[i * 2 + 1] = i & 0xff;
}
if (size & 0x1)
buf[i * 2] = (i >> 8) & 0xff;
break;
case 11:
for (i = 0; i < size % 2; i++) {
buf[i * 2] = ~((i >> 8) & 0xff);
buf[i * 2 + 1] = ~(i & 0xff);
}
if (size & 0x1)
buf[i * 2] = ~((i >> 8) & 0xff);
break;
case 12:
memset(buf, 0x00, size);
break;
case 13:
memset(buf, 0xff, size);
break;
}
if ((variant >= 0) && (variant <= 7)) {
/* Write block number in the last two bytes of each 256-byte
* block, big endian for easier reading of the hexdump.
* Note that this wraps around for chips larger than 2^24 bytes
* (16 MB).
*/
for (i = 0; i < size / 256; i++) {
buf[i * 256 + 254] = (i >> 8) & 0xff;
buf[i * 256 + 255] = i & 0xff;
}
}
return 0;
}
int check_max_decode(enum chipbustype buses, uint32_t size)
{
int limitexceeded = 0;
if ((buses & BUS_PARALLEL) && (max_rom_decode.parallel < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.parallel / 1024, "Parallel");
}
if ((buses & BUS_LPC) && (max_rom_decode.lpc < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.lpc / 1024, "LPC");
}
if ((buses & BUS_FWH) && (max_rom_decode.fwh < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.fwh / 1024, "FWH");
}
if ((buses & BUS_SPI) && (max_rom_decode.spi < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.spi / 1024, "SPI");
}
if (!limitexceeded)
return 0;
/* Sometimes chip and programmer have more than one bus in common,
* and the limit is not exceeded on all buses. Tell the user.
*/
if (bitcount(buses) > limitexceeded)
/* FIXME: This message is designed towards CLI users. */
msg_pdbg("There is at least one common chip/programmer "
"interface which can support a chip of this size. "
"You can try --force at your own risk.\n");
return 1;
}
int probe_flash(struct registered_programmer *pgm, int startchip,
struct flashctx *fill_flash, int force)
{
const struct flashchip *flash;
unsigned long base = 0;
char location[64];
uint32_t size;
enum chipbustype buses_common;
char *tmp;
for (flash = flashchips + startchip; flash && flash->name; flash++) {
if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0)
continue;
buses_common = pgm->buses_supported & flash->bustype;
if (!buses_common)
continue;
msg_gdbg("Probing for %s %s, %d kB: ",
flash->vendor, flash->name, flash->total_size);
if (!flash->probe && !force) {
msg_gdbg("failed! flashrom has no probe function for "
"this flash chip.\n");
continue;
}
size = flash->total_size * 1024;
check_max_decode(buses_common, size);
/* Start filling in the dynamic data. */
memcpy(fill_flash, flash, sizeof(struct flashchip));
fill_flash->pgm = pgm;
base = flashbase ? flashbase : (0xffffffff - size + 1);
fill_flash->virtual_memory = (chipaddr)programmer_map_flash_region("flash chip", base, size);
if (force)
break;
if (fill_flash->probe(fill_flash) != 1)
goto notfound;
/* If this is the first chip found, accept it.
* If this is not the first chip found, accept it only if it is
* a non-generic match.
* We could either make chipcount global or provide it as
* parameter, or we assume that startchip==0 means this call to
* probe_flash() is the first one and thus no chip has been
* found before.
*/
if (startchip == 0 || fill_flash->model_id != GENERIC_DEVICE_ID)
break;
notfound:
programmer_unmap_flash_region((void *)fill_flash->virtual_memory, size);
}
if (!flash || !flash->name)
return -1;
#if CONFIG_INTERNAL == 1
if (programmer_table[programmer].map_flash_region == physmap)
snprintf(location, sizeof(location), "at physical address 0x%lx", base);
else
#endif
snprintf(location, sizeof(location), "on %s", programmer_table[programmer].name);
tmp = flashbuses_to_text(flash->bustype);
msg_cinfo("%s %s flash chip \"%s\" (%d kB, %s) %s.\n",
force ? "Assuming" : "Found", fill_flash->vendor,
fill_flash->name, fill_flash->total_size, tmp, location);
free(tmp);
/* Flash registers will not be mapped if the chip was forced. Lock info
* may be stored in registers, so avoid lock info printing.
*/
if (!force)
if (fill_flash->printlock)
fill_flash->printlock(fill_flash);
/* Return position of matching chip. */
return flash - flashchips;
}
int verify_flash(struct flashctx *flash, uint8_t *buf)
{
int ret;
unsigned int total_size = flash->total_size * 1024;
msg_cinfo("Verifying flash... ");
ret = verify_range(flash, buf, 0, total_size, NULL);
if (!ret)
msg_cinfo("VERIFIED. \n");
return ret;
}
int read_buf_from_file(unsigned char *buf, unsigned long size,
const char *filename)
{
unsigned long numbytes;
FILE *image;
struct stat image_stat;
if ((image = fopen(filename, "rb")) == NULL) {
perror(filename);
return 1;
}
if (fstat(fileno(image), &image_stat) != 0) {
perror(filename);
fclose(image);
return 1;
}
if (image_stat.st_size != size) {
msg_gerr("Error: Image size doesn't match\n");
fclose(image);
return 1;
}
numbytes = fread(buf, 1, size, image);
if (fclose(image)) {
perror(filename);
return 1;
}
if (numbytes != size) {
msg_gerr("Error: Failed to read complete file. Got %ld bytes, "
"wanted %ld!\n", numbytes, size);
return 1;
}
return 0;
}
int write_buf_to_file(unsigned char *buf, unsigned long size,
const char *filename)
{
unsigned long numbytes;
FILE *image;
if (!filename) {
msg_gerr("No filename specified.\n");
return 1;
}
if ((image = fopen(filename, "wb")) == NULL) {
perror(filename);
return 1;
}
numbytes = fwrite(buf, 1, size, image);
fclose(image);
if (numbytes != size) {
msg_gerr("File %s could not be written completely.\n",
filename);
return 1;
}
return 0;
}
int read_flash_to_file(struct flashctx *flash, const char *filename)
{
unsigned long size = flash->total_size * 1024;
unsigned char *buf = calloc(size, sizeof(char));
int ret = 0;
msg_cinfo("Reading flash... ");
if (!buf) {
msg_gerr("Memory allocation failed!\n");
msg_cinfo("FAILED.\n");
return 1;
}
if (!flash->read) {
msg_cerr("No read function available for this flash chip.\n");
ret = 1;
goto out_free;
}
if (flash->read(flash, buf, 0, size)) {
msg_cerr("Read operation failed!\n");
ret = 1;
goto out_free;
}
ret = write_buf_to_file(buf, size, filename);
out_free:
free(buf);
msg_cinfo("%s.\n", ret ? "FAILED" : "done");
return ret;
}
/* This function shares a lot of its structure with erase_and_write_flash() and
* walk_eraseregions().
* Even if an error is found, the function will keep going and check the rest.
*/
static int selfcheck_eraseblocks(const struct flashchip *flash)
{
int i, j, k;
int ret = 0;
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
unsigned int done = 0;
struct block_eraser eraser = flash->block_erasers[k];
for (i = 0; i < NUM_ERASEREGIONS; i++) {
/* Blocks with zero size are bugs in flashchips.c. */
if (eraser.eraseblocks[i].count &&
!eraser.eraseblocks[i].size) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i region %i has size 0. Please report"
" a bug at flashrom@flashrom.org\n",
flash->name, k, i);
ret = 1;
}
/* Blocks with zero count are bugs in flashchips.c. */
if (!eraser.eraseblocks[i].count &&
eraser.eraseblocks[i].size) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i region %i has count 0. Please report"
" a bug at flashrom@flashrom.org\n",
flash->name, k, i);
ret = 1;
}
done += eraser.eraseblocks[i].count *
eraser.eraseblocks[i].size;
}
/* Empty eraseblock definition with erase function. */
if (!done && eraser.block_erase)
msg_gspew("Strange: Empty eraseblock definition with "
"non-empty erase function. Not an error.\n");
if (!done)
continue;
if (done != flash->total_size * 1024) {
msg_gerr("ERROR: Flash chip %s erase function %i "
"region walking resulted in 0x%06x bytes total,"
" expected 0x%06x bytes. Please report a bug at"
" flashrom@flashrom.org\n", flash->name, k,
done, flash->total_size * 1024);
ret = 1;
}
if (!eraser.block_erase)
continue;
/* Check if there are identical erase functions for different
* layouts. That would imply "magic" erase functions. The
* easiest way to check this is with function pointers.
*/
for (j = k + 1; j < NUM_ERASEFUNCTIONS; j++) {
if (eraser.block_erase ==
flash->block_erasers[j].block_erase) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i and %i are identical. Please report"
" a bug at flashrom@flashrom.org\n",
flash->name, k, j);
ret = 1;
}
}
}
return ret;
}
static int erase_and_write_block_helper(struct flashctx *flash,
unsigned int start, unsigned int len,
uint8_t *curcontents,
uint8_t *newcontents,
int (*erasefn) (struct flashctx *flash,
unsigned int addr,
unsigned int len))
{
unsigned int starthere = 0, lenhere = 0;
int ret = 0, skip = 1, writecount = 0;
enum write_granularity gran = write_gran_256bytes; /* FIXME */
/* curcontents and newcontents are opaque to walk_eraseregions, and
* need to be adjusted here to keep the impression of proper abstraction
*/
curcontents += start;
newcontents += start;
msg_cdbg(":");
/* FIXME: Assume 256 byte granularity for now to play it safe. */
if (need_erase(curcontents, newcontents, len, gran)) {
msg_cdbg("E");
ret = erasefn(flash, start, len);
if (ret)
return ret;
if (check_erased_range(flash, start, len)) {
msg_cerr("ERASE FAILED!\n");
return -1;
}
/* Erase was successful. Adjust curcontents. */
memset(curcontents, 0xff, len);
skip = 0;
}
/* get_next_write() sets starthere to a new value after the call. */
while ((lenhere = get_next_write(curcontents + starthere,
newcontents + starthere,
len - starthere, &starthere, gran))) {
if (!writecount++)
msg_cdbg("W");
/* Needs the partial write function signature. */
ret = flash->write(flash, newcontents + starthere,
start + starthere, lenhere);
if (ret)
return ret;
starthere += lenhere;
skip = 0;
}
if (skip)
msg_cdbg("S");
return ret;
}
static int walk_eraseregions(struct flashctx *flash, int erasefunction,
int (*do_something) (struct flashctx *flash,
unsigned int addr,
unsigned int len,
uint8_t *param1,
uint8_t *param2,
int (*erasefn) (
struct flashctx *flash,
unsigned int addr,
unsigned int len)),
void *param1, void *param2)
{
int i, j;
unsigned int start = 0;
unsigned int len;
struct block_eraser eraser = flash->block_erasers[erasefunction];
for (i = 0; i < NUM_ERASEREGIONS; i++) {
/* count==0 for all automatically initialized array
* members so the loop below won't be executed for them.
*/
len = eraser.eraseblocks[i].size;
for (j = 0; j < eraser.eraseblocks[i].count; j++) {
/* Print this for every block except the first one. */
if (i || j)
msg_cdbg(", ");
msg_cdbg("0x%06x-0x%06x", start,
start + len - 1);
if (do_something(flash, start, len, param1, param2,
eraser.block_erase)) {
return 1;
}
start += len;
}
}
msg_cdbg("\n");
return 0;
}
static int check_block_eraser(const struct flashctx *flash, int k, int log)
{
struct block_eraser eraser = flash->block_erasers[k];
if (!eraser.block_erase && !eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("not defined. ");
return 1;
}
if (!eraser.block_erase && eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("eraseblock layout is known, but matching "
"block erase function is not implemented. ");
return 1;
}
if (eraser.block_erase && !eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("block erase function found, but "
"eraseblock layout is not defined. ");
return 1;
}
return 0;
}
int erase_and_write_flash(struct flashctx *flash, uint8_t *oldcontents,
uint8_t *newcontents)
{
int k, ret = 1;
uint8_t *curcontents;
unsigned long size = flash->total_size * 1024;
unsigned int usable_erasefunctions = count_usable_erasers(flash);
msg_cinfo("Erasing and writing flash chip... ");
curcontents = malloc(size);
if (!curcontents) {
msg_gerr("Out of memory!\n");
exit(1);
}
/* Copy oldcontents to curcontents to avoid clobbering oldcontents. */
memcpy(curcontents, oldcontents, size);
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
if (k != 0)
msg_cdbg("Looking for another erase function.\n");
if (!usable_erasefunctions) {
msg_cdbg("No usable erase functions left.\n");
break;
}
msg_cdbg("Trying erase function %i... ", k);
if (check_block_eraser(flash, k, 1))
continue;
usable_erasefunctions--;
ret = walk_eraseregions(flash, k, &erase_and_write_block_helper,
curcontents, newcontents);
/* If everything is OK, don't try another erase function. */
if (!ret)
break;
/* Write/erase failed, so try to find out what the current chip
* contents are. If no usable erase functions remain, we can
* skip this: the next iteration will break immediately anyway.
*/
if (!usable_erasefunctions)
continue;
/* Reading the whole chip may take a while, inform the user even
* in non-verbose mode.
*/
msg_cinfo("Reading current flash chip contents... ");
if (flash->read(flash, curcontents, 0, size)) {
/* Now we are truly screwed. Read failed as well. */
msg_cerr("Can't read anymore! Aborting.\n");
/* We have no idea about the flash chip contents, so
* retrying with another erase function is pointless.
*/
break;
}
msg_cinfo("done. ");
}
/* Free the scratchpad. */
free(curcontents);
if (ret) {
msg_cerr("FAILED!\n");
} else {
msg_cinfo("Erase/write done.\n");
}
return ret;
}
void nonfatal_help_message(void)
{
msg_gerr("Writing to the flash chip apparently didn't do anything.\n"
"This means we have to add special support for your board, "
"programmer or flash chip.\n"
"Please report this on IRC at irc.freenode.net (channel "
"#flashrom) or\n"
"mail flashrom@flashrom.org!\n"
"-------------------------------------------------------------"
"------------------\n"
"You may now reboot or simply leave the machine running.\n");
}
void emergency_help_message(void)
{
msg_gerr("Your flash chip is in an unknown state.\n"
"Get help on IRC at irc.freenode.net (channel #flashrom) or\n"
"mail flashrom@flashrom.org with FAILED: your board name in "
"the subject line!\n"
"-------------------------------------------------------------"
"------------------\n"
"DO NOT REBOOT OR POWEROFF!\n");
}
/* The way to go if you want a delimited list of programmers */
void list_programmers(const char *delim)
{
enum programmer p;
for (p = 0; p < PROGRAMMER_INVALID; p++) {
msg_ginfo("%s", programmer_table[p].name);
if (p < PROGRAMMER_INVALID - 1)
msg_ginfo("%s", delim);
}
msg_ginfo("\n");
}
void list_programmers_linebreak(int startcol, int cols, int paren)
{
const char *pname;
int pnamelen;
int remaining = 0, firstline = 1;
enum programmer p;
int i;
for (p = 0; p < PROGRAMMER_INVALID; p++) {
pname = programmer_table[p].name;
pnamelen = strlen(pname);
if (remaining - pnamelen - 2 < 0) {
if (firstline)
firstline = 0;
else
printf("\n");
for (i = 0; i < startcol; i++)
printf(" ");
remaining = cols - startcol;
} else {
printf(" ");
remaining--;
}
if (paren && (p == 0)) {
printf("(");
remaining--;
}
printf("%s", pname);
remaining -= pnamelen;
if (p < PROGRAMMER_INVALID - 1) {
printf(",");
remaining--;
} else {
if (paren)
printf(")");
printf("\n");
}
}
}
void print_sysinfo(void)
{
#if HAVE_UTSNAME == 1
struct utsname osinfo;
uname(&osinfo);
msg_ginfo(" on %s %s (%s)", osinfo.sysname, osinfo.release,
osinfo.machine);
#else
msg_ginfo(" on unknown machine");
#endif
msg_ginfo(", built with");
#if NEED_PCI == 1
#ifdef PCILIB_VERSION
msg_ginfo(" libpci %s,", PCILIB_VERSION);
#else
msg_ginfo(" unknown PCI library,");
#endif
#endif
#ifdef __clang__
msg_ginfo(" LLVM Clang");
#ifdef __clang_version__
msg_ginfo(" %s,", __clang_version__);
#else
msg_ginfo(" unknown version (before r102686),");
#endif
#elif defined(__GNUC__)
msg_ginfo(" GCC");
#ifdef __VERSION__
msg_ginfo(" %s,", __VERSION__);
#else
msg_ginfo(" unknown version,");
#endif
#else
msg_ginfo(" unknown compiler,");
#endif
#if defined (__FLASHROM_LITTLE_ENDIAN__)
msg_ginfo(" little endian");
#else
msg_ginfo(" big endian");
#endif
msg_ginfo("\n");
}
void print_version(void)
{
msg_ginfo("flashrom v%s", flashrom_version);
print_sysinfo();
}
void print_banner(void)
{
msg_ginfo("flashrom is free software, get the source code at "
"http://www.flashrom.org\n");
msg_ginfo("\n");
}
int selfcheck(void)
{
int ret = 0;
const struct flashchip *flash;
/* Safety check. Instead of aborting after the first error, check
* if more errors exist.
*/
if (ARRAY_SIZE(programmer_table) - 1 != PROGRAMMER_INVALID) {
msg_gerr("Programmer table miscompilation!\n");
ret = 1;
}
/* It would be favorable if we could also check for correct termination
* of the following arrays, but we don't know their sizes in here...
* For 'flashchips' we check the first element to be non-null. In the
* other cases there exist use cases where the first element can be
* null. */
if (flashchips == NULL || flashchips[0].vendor == NULL) {
msg_gerr("Flashchips table miscompilation!\n");
ret = 1;
}
/* Check that virtual_memory in struct flashctx is placed directly
* after the members copied from struct flashchip.
*/
if (sizeof(struct flashchip) !=
offsetof(struct flashctx, virtual_memory)) {
msg_gerr("struct flashctx broken!\n");
ret = 1;
}
for (flash = flashchips; flash && flash->name; flash++)
if (selfcheck_eraseblocks(flash))
ret = 1;
#if CONFIG_INTERNAL == 1
if (chipset_enables == NULL) {
msg_gerr("Chipset enables table does not exist!\n");
ret = 1;
}
if (board_matches == NULL) {
msg_gerr("Board enables table does not exist!\n");
ret = 1;
}
if (boards_known == NULL) {
msg_gerr("Known boards table does not exist!\n");
ret = 1;
}
if (laptops_known == NULL) {
msg_gerr("Known laptops table does not exist!\n");
ret = 1;
}
#endif
return ret;
}
void check_chip_supported(const struct flashctx *flash)
{
if (TEST_OK_MASK != (flash->tested & TEST_OK_MASK)) {
msg_cinfo("===\n");
if (flash->tested & TEST_BAD_MASK) {
msg_cinfo("This flash part has status NOT WORKING for operations:");
if (flash->tested & TEST_BAD_PROBE)
msg_cinfo(" PROBE");
if (flash->tested & TEST_BAD_READ)
msg_cinfo(" READ");
if (flash->tested & TEST_BAD_ERASE)
msg_cinfo(" ERASE");
if (flash->tested & TEST_BAD_WRITE)
msg_cinfo(" WRITE");
msg_cinfo("\n");
}
if ((!(flash->tested & TEST_BAD_PROBE) && !(flash->tested & TEST_OK_PROBE)) ||
(!(flash->tested & TEST_BAD_READ) && !(flash->tested & TEST_OK_READ)) ||
(!(flash->tested & TEST_BAD_ERASE) && !(flash->tested & TEST_OK_ERASE)) ||
(!(flash->tested & TEST_BAD_WRITE) && !(flash->tested & TEST_OK_WRITE))) {
msg_cinfo("This flash part has status UNTESTED for operations:");
if (!(flash->tested & TEST_BAD_PROBE) && !(flash->tested & TEST_OK_PROBE))
msg_cinfo(" PROBE");
if (!(flash->tested & TEST_BAD_READ) && !(flash->tested & TEST_OK_READ))
msg_cinfo(" READ");
if (!(flash->tested & TEST_BAD_ERASE) && !(flash->tested & TEST_OK_ERASE))
msg_cinfo(" ERASE");
if (!(flash->tested & TEST_BAD_WRITE) && !(flash->tested & TEST_OK_WRITE))
msg_cinfo(" WRITE");
msg_cinfo("\n");
}
/* FIXME: This message is designed towards CLI users. */
msg_cinfo("The test status of this chip may have been updated "
"in the latest development\n"
"version of flashrom. If you are running the latest "
"development version,\n"
"please email a report to flashrom@flashrom.org if "
"any of the above operations\n"
"work correctly for you with this flash part. Please "
"include the flashrom\n"
"output with the additional -V option for all "
"operations you tested (-V, -Vr,\n"
"-Vw, -VE), and mention which mainboard or "
"programmer you tested.\n"
"Please mention your board in the subject line. "
"Thanks for your help!\n");
}
}
/* FIXME: This function signature needs to be improved once doit() has a better
* function signature.
*/
int chip_safety_check(struct flashctx *flash, int force, int read_it,
int write_it, int erase_it, int verify_it)
{
if (!programmer_may_write && (write_it || erase_it)) {
msg_perr("Write/erase is not working yet on your programmer in "
"its current configuration.\n");
/* --force is the wrong approach, but it's the best we can do
* until the generic programmer parameter parser is merged.
*/
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (read_it || erase_it || write_it || verify_it) {
/* Everything needs read. */
if (flash->tested & TEST_BAD_READ) {
msg_cerr("Read is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (!flash->read) {
msg_cerr("flashrom has no read function for this "
"flash chip.\n");
return 1;
}
}
if (erase_it || write_it) {
/* Write needs erase. */
if (flash->tested & TEST_BAD_ERASE) {
msg_cerr("Erase is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if(count_usable_erasers(flash) == 0) {
msg_cerr("flashrom has no erase function for this "
"flash chip.\n");
return 1;
}
}
if (write_it) {
if (flash->tested & TEST_BAD_WRITE) {
msg_cerr("Write is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (!flash->write) {
msg_cerr("flashrom has no write function for this "
"flash chip.\n");
return 1;
}
}
return 0;
}
/* This function signature is horrible. We need to design a better interface,
* but right now it allows us to split off the CLI code.
* Besides that, the function itself is a textbook example of abysmal code flow.
*/
int doit(struct flashctx *flash, int force, const char *filename, int read_it,
int write_it, int erase_it, int verify_it)
{
uint8_t *oldcontents;
uint8_t *newcontents;
int ret = 0;
unsigned long size = flash->total_size * 1024;
if (chip_safety_check(flash, force, read_it, write_it, erase_it, verify_it)) {
msg_cerr("Aborting.\n");
ret = 1;
goto out_nofree;
}
/* Given the existence of read locks, we want to unlock for read,
* erase and write.
*/
if (flash->unlock)
flash->unlock(flash);
if (read_it) {
ret = read_flash_to_file(flash, filename);
goto out_nofree;
}
oldcontents = malloc(size);
if (!oldcontents) {
msg_gerr("Out of memory!\n");
exit(1);
}
/* Assume worst case: All bits are 0. */
memset(oldcontents, 0x00, size);
newcontents = malloc(size);
if (!newcontents) {
msg_gerr("Out of memory!\n");
exit(1);
}
/* Assume best case: All bits should be 1. */
memset(newcontents, 0xff, size);
/* Side effect of the assumptions above: Default write action is erase
* because newcontents looks like a completely erased chip, and
* oldcontents being completely 0x00 means we have to erase everything
* before we can write.
*/
if (erase_it) {
/* FIXME: Do we really want the scary warning if erase failed?
* After all, after erase the chip is either blank or partially
* blank or it has the old contents. A blank chip won't boot,
* so if the user wanted erase and reboots afterwards, the user
* knows very well that booting won't work.
*/
if (erase_and_write_flash(flash, oldcontents, newcontents)) {
emergency_help_message();
ret = 1;
}
goto out;
}
if (write_it || verify_it) {
if (read_buf_from_file(newcontents, size, filename)) {
ret = 1;
goto out;
}
#if CONFIG_INTERNAL == 1
if (programmer == PROGRAMMER_INTERNAL)
show_id(newcontents, size, force);
#endif
}
/* Read the whole chip to be able to check whether regions need to be
* erased and to give better diagnostics in case write fails.
* The alternative would be to read only the regions which are to be
* preserved, but in that case we might perform unneeded erase which
* takes time as well.
*/
msg_cinfo("Reading old flash chip contents... ");
if (flash->read(flash, oldcontents, 0, size)) {
ret = 1;
msg_cinfo("FAILED.\n");
goto out;
}
msg_cinfo("done.\n");
// This should be moved into each flash part's code to do it
// cleanly. This does the job.
handle_romentries(flash, oldcontents, newcontents);
// ////////////////////////////////////////////////////////////
if (write_it) {
if (erase_and_write_flash(flash, oldcontents, newcontents)) {
msg_cerr("Uh oh. Erase/write failed. Checking if "
"anything changed.\n");
if (!flash->read(flash, newcontents, 0, size)) {
if (!memcmp(oldcontents, newcontents, size)) {
msg_cinfo("Good. It seems nothing was "
"changed.\n");
nonfatal_help_message();
ret = 1;
goto out;
}
}
emergency_help_message();
ret = 1;
goto out;
}
}
if (verify_it) {
/* Work around chips which need some time to calm down. */
if (write_it)
programmer_delay(1000*1000);
ret = verify_flash(flash, newcontents);
/* If we tried to write, and verification now fails, we
* might have an emergency situation.
*/
if (ret && write_it)
emergency_help_message();
}
out:
free(oldcontents);
free(newcontents);
out_nofree:
programmer_shutdown();
return ret;
}