Paul Kocialkowski | 80ae14e | 2018-01-15 01:07:46 +0300 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the flashrom project. |
| 3 | * |
| 4 | * Copyright (C) 2015 Paul Kocialkowski <contact@paulk.fr> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | */ |
| 16 | |
| 17 | #include <string.h> |
| 18 | #include "flash.h" |
| 19 | #include "ene.h" |
| 20 | #include "edi.h" |
| 21 | |
| 22 | static unsigned int edi_read_buffer_length = EDI_READ_BUFFER_LENGTH_DEFAULT; |
| 23 | |
| 24 | static const struct ene_chip ene_kb9012 = { |
| 25 | .hwversion = ENE_KB9012_HWVERSION, |
| 26 | .ediid = ENE_KB9012_EDIID, |
| 27 | }; |
| 28 | |
| 29 | static void edi_write_cmd(unsigned char *cmd, unsigned short address, unsigned char data) |
| 30 | { |
| 31 | cmd[0] = EDI_WRITE; /* EDI write command. */ |
| 32 | cmd[1] = 0x00; /* Address is only 2 bytes. */ |
| 33 | cmd[2] = (address >> 8) & 0xff; /* Address higher byte. */ |
| 34 | cmd[3] = (address >> 0) & 0xff; /* Address lower byte. */ |
| 35 | cmd[4] = data; /* Write data. */ |
| 36 | } |
| 37 | |
| 38 | static void edi_read_cmd(unsigned char *cmd, unsigned short address) |
| 39 | { |
| 40 | cmd[0] = EDI_READ; /* EDI read command. */ |
| 41 | cmd[1] = 0x00; /* Address is only 2 bytes. */ |
| 42 | cmd[2] = (address >> 8) & 0xff; /* Address higher byte. */ |
| 43 | cmd[3] = (address >> 0) & 0xff; /* Address lower byte. */ |
| 44 | } |
| 45 | |
| 46 | static int edi_write(struct flashctx *flash, unsigned short address, unsigned char data) |
| 47 | { |
| 48 | unsigned char cmd[5]; |
| 49 | int rc; |
| 50 | |
| 51 | edi_write_cmd(cmd, address, data); |
| 52 | |
| 53 | rc = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); |
| 54 | if (rc) |
| 55 | return -1; |
| 56 | |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | static int edi_read_byte(struct flashctx *flash, unsigned short address, unsigned char *data) |
| 61 | { |
| 62 | unsigned char cmd[4]; |
| 63 | unsigned char buffer[edi_read_buffer_length]; |
| 64 | unsigned int index; |
| 65 | unsigned int i; |
| 66 | int rc; |
| 67 | |
| 68 | edi_read_cmd(cmd, address); |
| 69 | |
| 70 | rc = spi_send_command(flash, sizeof(cmd), sizeof(buffer), cmd, buffer); |
| 71 | if (rc) |
| 72 | return -1; |
| 73 | |
| 74 | index = 0; |
| 75 | |
| 76 | for (i = 0; i < sizeof(buffer); i++) { |
| 77 | index = i; |
| 78 | |
| 79 | if (buffer[i] == EDI_NOT_READY) |
| 80 | continue; |
| 81 | |
| 82 | if (buffer[i] == EDI_READY) { |
| 83 | if (i == (sizeof(buffer) - 1)) { |
| 84 | /* |
| 85 | * Buffer size was too small for receiving the value. |
| 86 | * This is as good as getting only EDI_NOT_READY. |
| 87 | */ |
| 88 | |
| 89 | buffer[i] = EDI_NOT_READY; |
| 90 | break; |
| 91 | } |
| 92 | |
| 93 | *data = buffer[i + 1]; |
| 94 | return 0; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | if (buffer[index] == EDI_NOT_READY) |
| 99 | return -EDI_NOT_READY; |
| 100 | |
| 101 | return -1; |
| 102 | } |
| 103 | |
| 104 | static int edi_read(struct flashctx *flash, unsigned short address, unsigned char *data) |
| 105 | { |
| 106 | int rc; |
| 107 | |
| 108 | do { |
| 109 | rc = edi_read_byte(flash, address, data); |
| 110 | if (rc == -EDI_NOT_READY) { |
| 111 | /* |
| 112 | * Buffer size is increased, one step at a time, |
| 113 | * to hold more data if we only catch EDI_NOT_READY. |
| 114 | * Once CS is deasserted, no more data will be sent by the EC, |
| 115 | * so we cannot keep reading afterwards and have to start a new |
| 116 | * transaction with a longer buffer, to be safe. |
| 117 | */ |
| 118 | |
| 119 | if (edi_read_buffer_length < EDI_READ_BUFFER_LENGTH_MAX) { |
| 120 | msg_pwarn("%s: Retrying read with greater buffer length!\n", __func__); |
| 121 | edi_read_buffer_length++; |
| 122 | } else { |
| 123 | msg_perr("%s: Maximum buffer length reached and data still not ready!\n", __func__); |
| 124 | return -1; |
| 125 | } |
| 126 | } else if (rc < 0) { |
| 127 | return -1; |
| 128 | } |
| 129 | } while (rc == -EDI_NOT_READY); |
| 130 | |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | static int edi_disable(struct flashctx *flash) |
| 135 | { |
| 136 | unsigned char cmd = EDI_DISABLE; |
| 137 | int rc; |
| 138 | |
| 139 | rc = spi_send_command(flash, sizeof(cmd), 0, &cmd, NULL); |
| 140 | if (rc) |
| 141 | return -1; |
| 142 | |
| 143 | return 0; |
| 144 | } |
| 145 | |
| 146 | static int edi_chip_probe(struct flashctx *flash, const struct ene_chip *chip) |
| 147 | { |
| 148 | unsigned char hwversion; |
| 149 | unsigned char ediid; |
| 150 | int rc; |
| 151 | |
| 152 | rc = edi_read(flash, ENE_EC_HWVERSION, &hwversion); |
Mike Banon | 3a82604 | 2018-01-15 01:09:16 +0300 | [diff] [blame] | 153 | if (rc < 0) { |
| 154 | msg_cdbg("%s: reading hwversion failed\n", __func__); |
Paul Kocialkowski | 80ae14e | 2018-01-15 01:07:46 +0300 | [diff] [blame] | 155 | return 0; |
Mike Banon | 3a82604 | 2018-01-15 01:09:16 +0300 | [diff] [blame] | 156 | } |
Paul Kocialkowski | 80ae14e | 2018-01-15 01:07:46 +0300 | [diff] [blame] | 157 | |
| 158 | rc = edi_read(flash, ENE_EC_EDIID, &ediid); |
Mike Banon | 3a82604 | 2018-01-15 01:09:16 +0300 | [diff] [blame] | 159 | if (rc < 0) { |
| 160 | msg_cdbg("%s: reading ediid failed\n", __func__); |
Paul Kocialkowski | 80ae14e | 2018-01-15 01:07:46 +0300 | [diff] [blame] | 161 | return 0; |
Mike Banon | 3a82604 | 2018-01-15 01:09:16 +0300 | [diff] [blame] | 162 | } |
| 163 | |
| 164 | msg_cdbg("%s: hwversion 0x%02x, ediid 0x%02x\n", __func__, hwversion, ediid); |
Paul Kocialkowski | 80ae14e | 2018-01-15 01:07:46 +0300 | [diff] [blame] | 165 | |
| 166 | if (chip->hwversion == hwversion && chip->ediid == ediid) |
| 167 | return 1; |
| 168 | |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | static int edi_spi_enable(struct flashctx *flash) |
| 173 | { |
| 174 | unsigned char buffer; |
| 175 | int rc; |
| 176 | |
| 177 | rc = edi_read(flash, ENE_XBI_EFCFG, &buffer); |
| 178 | if (rc < 0) |
| 179 | return -1; |
| 180 | |
| 181 | buffer |= ENE_XBI_EFCFG_CMD_WE; |
| 182 | |
| 183 | rc = edi_write(flash, ENE_XBI_EFCFG, buffer); |
| 184 | if (rc < 0) |
| 185 | return -1; |
| 186 | |
| 187 | return 0; |
| 188 | } |
| 189 | |
| 190 | static int edi_spi_disable(struct flashctx *flash) |
| 191 | { |
| 192 | unsigned char buffer; |
| 193 | int rc; |
| 194 | |
| 195 | rc = edi_read(flash, ENE_XBI_EFCFG, &buffer); |
| 196 | if (rc < 0) |
| 197 | return -1; |
| 198 | |
| 199 | buffer &= ~ENE_XBI_EFCFG_CMD_WE; |
| 200 | |
| 201 | rc = edi_write(flash, ENE_XBI_EFCFG, buffer); |
| 202 | if (rc < 0) |
| 203 | return -1; |
| 204 | |
| 205 | return 0; |
| 206 | } |
| 207 | |
| 208 | static int edi_spi_busy(struct flashctx *flash) |
| 209 | { |
| 210 | unsigned char buffer; |
| 211 | int rc; |
| 212 | |
| 213 | rc = edi_read(flash, ENE_XBI_EFCFG, &buffer); |
| 214 | if (rc < 0) |
| 215 | return -1; |
| 216 | |
| 217 | return !!(buffer & ENE_XBI_EFCFG_BUSY); |
| 218 | } |
| 219 | |
| 220 | static int edi_spi_address(struct flashctx *flash, unsigned int start, unsigned int address) |
| 221 | { |
| 222 | int rc; |
| 223 | |
| 224 | if ((address == start) || (((address - 1) & 0xff) != (address & 0xff))) { |
| 225 | rc = edi_write(flash, ENE_XBI_EFA0, ((address & 0xff) >> 0)); |
| 226 | if (rc < 0) |
| 227 | return -1; |
| 228 | } |
| 229 | |
| 230 | if ((address == start) || (((address - 1) & 0xff00) != (address & 0xff00))) { |
| 231 | rc = edi_write(flash, ENE_XBI_EFA1, ((address & 0xff00) >> 8)); |
| 232 | if (rc < 0) |
| 233 | return -1; |
| 234 | } |
| 235 | |
| 236 | if ((address == start) || (((address - 1) & 0xff0000) != (address & 0xff0000))) { |
| 237 | rc = edi_write(flash, ENE_XBI_EFA2, ((address & 0xff0000) >> 16)); |
| 238 | if (rc < 0) |
| 239 | return -1; |
| 240 | } |
| 241 | |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | static int edi_8051_reset(struct flashctx *flash) |
| 246 | { |
| 247 | unsigned char buffer; |
| 248 | int rc; |
| 249 | |
| 250 | rc = edi_read(flash, ENE_EC_PXCFG, &buffer); |
| 251 | if (rc < 0) |
| 252 | return -1; |
| 253 | |
| 254 | buffer |= ENE_EC_PXCFG_8051_RESET; |
| 255 | |
| 256 | rc = edi_write(flash, ENE_EC_PXCFG, buffer); |
| 257 | if (rc < 0) |
| 258 | return -1; |
| 259 | |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | static int edi_8051_execute(struct flashctx *flash) |
| 264 | { |
| 265 | unsigned char buffer; |
| 266 | int rc; |
| 267 | |
| 268 | rc = edi_read(flash, ENE_EC_PXCFG, &buffer); |
| 269 | if (rc < 0) |
| 270 | return -1; |
| 271 | |
| 272 | buffer &= ~ENE_EC_PXCFG_8051_RESET; |
| 273 | |
| 274 | rc = edi_write(flash, ENE_EC_PXCFG, buffer); |
| 275 | if (rc < 0) |
| 276 | return -1; |
| 277 | |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | int edi_chip_block_erase(struct flashctx *flash, unsigned int page, unsigned int size) |
| 282 | { |
| 283 | unsigned int timeout = 64; |
| 284 | int rc; |
| 285 | |
| 286 | if (size != flash->chip->page_size) { |
| 287 | msg_perr("%s: Block erase size is not page size!\n", __func__); |
| 288 | return -1; |
| 289 | } |
| 290 | |
| 291 | rc = edi_spi_enable(flash); |
| 292 | if (rc < 0) { |
| 293 | msg_perr("%s: Unable to enable SPI!\n", __func__); |
| 294 | return -1; |
| 295 | } |
| 296 | |
| 297 | rc = edi_spi_address(flash, page, page); |
| 298 | if (rc < 0) |
| 299 | return -1; |
| 300 | |
| 301 | rc = edi_write(flash, ENE_XBI_EFCMD, ENE_XBI_EFCMD_ERASE); |
| 302 | if (rc < 0) |
| 303 | return -1; |
| 304 | |
| 305 | while (edi_spi_busy(flash) == 1 && timeout) { |
| 306 | programmer_delay(10); |
| 307 | timeout--; |
| 308 | } |
| 309 | |
| 310 | if (!timeout) { |
| 311 | msg_perr("%s: Timed out waiting for SPI not busy!\n", __func__); |
| 312 | return -1; |
| 313 | } |
| 314 | |
| 315 | rc = edi_spi_disable(flash); |
| 316 | if (rc < 0) { |
| 317 | msg_perr("%s: Unable to disable SPI!\n", __func__); |
| 318 | return -1; |
| 319 | } |
| 320 | |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | int edi_chip_write(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) |
| 325 | { |
| 326 | unsigned int address = start; |
| 327 | unsigned int pages; |
| 328 | unsigned int timeout; |
| 329 | unsigned int i, j; |
| 330 | int rc; |
| 331 | |
| 332 | if ((start % flash->chip->page_size) != 0) { |
| 333 | msg_perr("%s: Start address is not page-aligned!\n", __func__); |
| 334 | return -1; |
| 335 | } |
| 336 | |
| 337 | if ((len % flash->chip->page_size) != 0) { |
| 338 | msg_perr("%s: Length is not page-aligned!\n", __func__); |
| 339 | return -1; |
| 340 | } |
| 341 | |
| 342 | pages = len / flash->chip->page_size; |
| 343 | |
| 344 | rc = edi_spi_enable(flash); |
| 345 | if (rc < 0) { |
| 346 | msg_perr("%s: Unable to enable SPI!\n", __func__); |
| 347 | return -1; |
| 348 | } |
| 349 | |
| 350 | for (i = 0; i < pages; i++) { |
| 351 | timeout = 64; |
| 352 | |
| 353 | /* Clear page buffer. */ |
| 354 | rc = edi_write(flash, ENE_XBI_EFCMD, ENE_XBI_EFCMD_HVPL_CLEAR); |
| 355 | if (rc < 0) |
| 356 | return -1; |
| 357 | |
| 358 | for (j = 0; j < flash->chip->page_size; j++) { |
| 359 | rc = edi_spi_address(flash, start, address); |
| 360 | if (rc < 0) |
| 361 | return -1; |
| 362 | |
| 363 | rc = edi_write(flash, ENE_XBI_EFDAT, *buf); |
| 364 | if (rc < 0) |
| 365 | return -1; |
| 366 | |
| 367 | rc = edi_write(flash, ENE_XBI_EFCMD, ENE_XBI_EFCMD_HVPL_LATCH); |
| 368 | if (rc < 0) |
| 369 | return -1; |
| 370 | |
| 371 | buf++; |
| 372 | address++; |
| 373 | } |
| 374 | |
| 375 | /* Program page buffer to flash. */ |
| 376 | rc = edi_write(flash, ENE_XBI_EFCMD, ENE_XBI_EFCMD_PROGRAM); |
| 377 | if (rc < 0) |
| 378 | return -1; |
| 379 | |
| 380 | while (edi_spi_busy(flash) == 1 && timeout) { |
| 381 | programmer_delay(10); |
| 382 | timeout--; |
| 383 | } |
| 384 | |
| 385 | if (!timeout) { |
| 386 | msg_perr("%s: Timed out waiting for SPI not busy!\n", __func__); |
| 387 | return -1; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | rc = edi_spi_disable(flash); |
| 392 | if (rc < 0) { |
| 393 | msg_perr("%s: Unable to disable SPI!\n", __func__); |
| 394 | return -1; |
| 395 | } |
| 396 | |
| 397 | return 0; |
| 398 | } |
| 399 | |
| 400 | int edi_chip_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) |
| 401 | { |
| 402 | unsigned int address = start; |
| 403 | unsigned int i; |
| 404 | unsigned int timeout; |
| 405 | int rc; |
| 406 | |
| 407 | rc = edi_spi_enable(flash); |
| 408 | if (rc < 0) { |
| 409 | msg_perr("%s: Unable to enable SPI!\n", __func__); |
| 410 | return -1; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * EDI brings such a drastic overhead that there is about no need to |
| 415 | * have any delay in between calls. The EDI protocol will handle wait |
| 416 | * I/O times on its own anyway. |
| 417 | */ |
| 418 | |
| 419 | for (i = 0; i < len; i++) { |
| 420 | timeout = 64; |
| 421 | |
| 422 | rc = edi_spi_address(flash, start, address); |
| 423 | if (rc < 0) |
| 424 | return -1; |
| 425 | |
| 426 | rc = edi_write(flash, ENE_XBI_EFCMD, ENE_XBI_EFCMD_READ); |
| 427 | if (rc < 0) |
| 428 | return -1; |
| 429 | |
| 430 | do { |
| 431 | rc = edi_read(flash, ENE_XBI_EFDAT, buf); |
| 432 | if (rc == 0) |
| 433 | break; |
| 434 | |
| 435 | /* Just in case. */ |
| 436 | while (edi_spi_busy(flash) == 1 && timeout) { |
| 437 | programmer_delay(10); |
| 438 | timeout--; |
| 439 | } |
| 440 | |
| 441 | if (!timeout) { |
| 442 | msg_perr("%s: Timed out waiting for SPI not busy!\n", __func__); |
| 443 | return -1; |
| 444 | } |
| 445 | } while (1); |
| 446 | |
| 447 | buf++; |
| 448 | address++; |
| 449 | } |
| 450 | |
| 451 | rc = edi_spi_disable(flash); |
| 452 | if (rc < 0) { |
| 453 | msg_perr("%s: Unable to disable SPI!\n", __func__); |
| 454 | return -1; |
| 455 | } |
| 456 | |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | int edi_shutdown(void *data) |
| 461 | { |
| 462 | struct flashctx *flash; |
| 463 | int rc; |
| 464 | |
| 465 | if (data == NULL) |
| 466 | return -1; |
| 467 | |
| 468 | flash = (struct flashctx *)data; |
| 469 | |
| 470 | rc = edi_8051_execute(flash); |
| 471 | if (rc < 0) { |
| 472 | msg_perr("%s: Unable to execute 8051!\n", __func__); |
| 473 | return -1; |
| 474 | } |
| 475 | |
| 476 | rc = edi_disable(flash); |
| 477 | if (rc < 0) { |
| 478 | msg_perr("%s: Unable to disable EDI!\n", __func__); |
| 479 | return -1; |
| 480 | } |
| 481 | |
| 482 | return 0; |
| 483 | } |
| 484 | |
| 485 | int edi_probe_kb9012(struct flashctx *flash) |
| 486 | { |
| 487 | int probe; |
| 488 | int rc; |
Paul Kocialkowski | a590f48 | 2018-01-15 01:08:39 +0300 | [diff] [blame] | 489 | unsigned char hwversion; |
| 490 | |
| 491 | /* |
| 492 | * ENE chips enable EDI by detecting a clock frequency between 1 MHz and |
| 493 | * 8 MHz. In many cases, the chip won't be able to both detect the clock |
| 494 | * signal and serve the associated request at the same time. |
| 495 | * |
| 496 | * Thus, a dummy read has to be added to ensure that EDI is enabled and |
| 497 | * operational starting from the next request. This dummy read below |
| 498 | * draws the chip's attention and as result the chip enables its EDI. |
| 499 | */ |
| 500 | edi_read(flash, ENE_EC_HWVERSION, &hwversion); |
Paul Kocialkowski | 80ae14e | 2018-01-15 01:07:46 +0300 | [diff] [blame] | 501 | |
| 502 | probe = edi_chip_probe(flash, &ene_kb9012); |
| 503 | if (!probe) |
| 504 | return 0; |
| 505 | |
| 506 | rc = edi_8051_reset(flash); |
| 507 | if (rc < 0) { |
| 508 | msg_perr("%s: Unable to reset 8051!\n", __func__); |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | register_shutdown(edi_shutdown, (void *)flash); |
| 513 | |
| 514 | return 1; |
| 515 | } |