| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2009 Peter Stuge <peter@stuge.se> |
| * Copyright (C) 2009 coresystems GmbH |
| * Copyright (C) 2010 Carl-Daniel Hailfinger |
| * Copyright (C) 2010 Rudolf Marek <r.marek@assembler.cz> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <unistd.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <errno.h> |
| #include "flash.h" |
| #include "platform.h" |
| #include "hwaccess_physmap.h" |
| |
| #if !defined(__DJGPP__) && !defined(__LIBPAYLOAD__) |
| /* No file access needed/possible to get mmap access permissions or access MSR. */ |
| #include <unistd.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <fcntl.h> |
| #endif |
| |
| #ifdef __DJGPP__ |
| #include <dpmi.h> |
| #include <malloc.h> |
| #include <sys/nearptr.h> |
| |
| #define ONE_MEGABYTE (1024 * 1024) |
| #define MEM_DEV "dpmi" |
| |
| static void *realmem_map_aligned; |
| |
| static void *map_first_meg(uintptr_t phys_addr, size_t len) |
| { |
| void *realmem_map; |
| size_t pagesize; |
| |
| if (realmem_map_aligned) |
| return realmem_map_aligned + phys_addr; |
| |
| /* valloc() from DJGPP 2.05 does not work properly */ |
| pagesize = getpagesize(); |
| |
| realmem_map = malloc(ONE_MEGABYTE + pagesize); |
| |
| if (!realmem_map) |
| return ERROR_PTR; |
| |
| realmem_map_aligned = (void *)(((size_t) realmem_map + |
| (pagesize - 1)) & ~(pagesize - 1)); |
| |
| if (__djgpp_map_physical_memory(realmem_map_aligned, ONE_MEGABYTE, 0)) { |
| free(realmem_map); |
| realmem_map_aligned = NULL; |
| return ERROR_PTR; |
| } |
| |
| return realmem_map_aligned + phys_addr; |
| } |
| |
| static void *sys_physmap(uintptr_t phys_addr, size_t len) |
| { |
| int ret; |
| __dpmi_meminfo mi; |
| |
| /* Enable 4GB limit on DS descriptor. */ |
| if (!__djgpp_nearptr_enable()) |
| return ERROR_PTR; |
| |
| if ((phys_addr + len - 1) < ONE_MEGABYTE) { |
| /* We need to use another method to map first 1MB. */ |
| return map_first_meg(phys_addr, len); |
| } |
| |
| mi.address = phys_addr; |
| mi.size = len; |
| ret = __dpmi_physical_address_mapping(&mi); |
| |
| if (ret != 0) |
| return ERROR_PTR; |
| |
| return (void *) mi.address + __djgpp_conventional_base; |
| } |
| |
| #define sys_physmap_rw_uncached sys_physmap |
| #define sys_physmap_ro_cached sys_physmap |
| |
| static void sys_physunmap_unaligned(void *virt_addr, size_t len) |
| { |
| __dpmi_meminfo mi; |
| |
| /* There is no known way to unmap the first 1 MB. The DPMI server will |
| * do this for us on exit. |
| */ |
| if ((virt_addr >= realmem_map_aligned) && |
| ((virt_addr + len) <= (realmem_map_aligned + ONE_MEGABYTE))) { |
| return; |
| } |
| |
| mi.address = (unsigned long) virt_addr; |
| __dpmi_free_physical_address_mapping(&mi); |
| } |
| |
| #elif defined(__LIBPAYLOAD__) |
| #include <arch/virtual.h> |
| |
| #define MEM_DEV "" |
| |
| static void *sys_physmap(uintptr_t phys_addr, size_t len) |
| { |
| return (void *)phys_to_virt(phys_addr); |
| } |
| |
| #define sys_physmap_rw_uncached sys_physmap |
| #define sys_physmap_ro_cached sys_physmap |
| |
| static void sys_physunmap_unaligned(void *virt_addr, size_t len) |
| { |
| } |
| #elif defined(__MACH__) && defined(__APPLE__) |
| #include <DirectHW/DirectHW.h> |
| |
| #define MEM_DEV "DirectHW" |
| |
| static void *sys_physmap(uintptr_t phys_addr, size_t len) |
| { |
| /* The short form of ?: is a GNU extension. |
| * FIXME: map_physical returns NULL both for errors and for success |
| * if the region is mapped at virtual address zero. If in doubt, report |
| * an error until a better interface exists. |
| */ |
| return map_physical(phys_addr, len) ? : ERROR_PTR; |
| } |
| |
| /* The OS X driver does not differentiate between mapping types. */ |
| #define sys_physmap_rw_uncached sys_physmap |
| #define sys_physmap_ro_cached sys_physmap |
| |
| static void sys_physunmap_unaligned(void *virt_addr, size_t len) |
| { |
| unmap_physical(virt_addr, len); |
| } |
| |
| #else |
| #include <sys/mman.h> |
| |
| #if defined (__sun) && (defined(__i386) || defined(__amd64)) |
| # define MEM_DEV "/dev/xsvc" |
| #else |
| # define MEM_DEV "/dev/mem" |
| #endif |
| |
| static int fd_mem = -1; |
| static int fd_mem_cached = -1; |
| |
| /* For MMIO access. Must be uncached, doesn't make sense to restrict to ro. */ |
| static void *sys_physmap_rw_uncached(uintptr_t phys_addr, size_t len) |
| { |
| void *virt_addr; |
| |
| if (-1 == fd_mem) { |
| /* Open the memory device UNCACHED. Important for MMIO. */ |
| if (-1 == (fd_mem = open(MEM_DEV, O_RDWR | O_SYNC))) { |
| msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno)); |
| return ERROR_PTR; |
| } |
| } |
| |
| virt_addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, fd_mem, (off_t)phys_addr); |
| return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr; |
| } |
| |
| /* For reading DMI/coreboot/whatever tables. We should never write, and we |
| * do not care about caching. |
| */ |
| static void *sys_physmap_ro_cached(uintptr_t phys_addr, size_t len) |
| { |
| void *virt_addr; |
| |
| if (-1 == fd_mem_cached) { |
| /* Open the memory device CACHED. */ |
| if (-1 == (fd_mem_cached = open(MEM_DEV, O_RDWR))) { |
| msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno)); |
| return ERROR_PTR; |
| } |
| } |
| |
| virt_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd_mem_cached, (off_t)phys_addr); |
| return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr; |
| } |
| |
| static void sys_physunmap_unaligned(void *virt_addr, size_t len) |
| { |
| munmap(virt_addr, len); |
| } |
| #endif |
| |
| #define PHYSM_RW 0 |
| #define PHYSM_RO 1 |
| #define PHYSM_NOCLEANUP 0 |
| #define PHYSM_CLEANUP 1 |
| #define PHYSM_EXACT 0 |
| #define PHYSM_ROUND 1 |
| |
| /* Round start to nearest page boundary below and set len so that the resulting address range ends at the lowest |
| * possible page boundary where the original address range is still entirely contained. It returns the |
| * difference between the rounded start address and the original start address. */ |
| static uintptr_t round_to_page_boundaries(uintptr_t *start, size_t *len) |
| { |
| uintptr_t page_size = getpagesize(); |
| uintptr_t page_mask = ~(page_size-1); |
| uintptr_t end = *start + *len; |
| uintptr_t old_start = *start; |
| msg_gspew("page_size=%" PRIxPTR "\n", page_size); |
| msg_gspew("pre-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n", |
| PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, end); |
| *start = *start & page_mask; |
| end = (end + page_size - 1) & page_mask; |
| *len = end - *start; |
| msg_gspew("post-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n", |
| PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, *start + *len); |
| return old_start - *start; |
| } |
| |
| struct undo_physmap_data { |
| void *virt_addr; |
| size_t len; |
| }; |
| |
| static int undo_physmap(void *data) |
| { |
| if (data == NULL) { |
| msg_perr("%s: tried to physunmap without valid data!\n", __func__); |
| return 1; |
| } |
| struct undo_physmap_data *d = data; |
| physunmap_unaligned(d->virt_addr, d->len); |
| free(data); |
| return 0; |
| } |
| |
| static void *physmap_common(const char *descr, uintptr_t phys_addr, size_t len, bool readonly, bool autocleanup, |
| bool round) |
| { |
| void *virt_addr; |
| uintptr_t offset = 0; |
| |
| if (len == 0) { |
| msg_pspew("Not mapping %s, zero size at 0x%0*" PRIxPTR ".\n", descr, PRIxPTR_WIDTH, phys_addr); |
| return ERROR_PTR; |
| } |
| |
| if (round) |
| offset = round_to_page_boundaries(&phys_addr, &len); |
| |
| if (readonly) |
| virt_addr = sys_physmap_ro_cached(phys_addr, len); |
| else |
| virt_addr = sys_physmap_rw_uncached(phys_addr, len); |
| |
| if (ERROR_PTR == virt_addr) { |
| if (NULL == descr) |
| descr = "memory"; |
| msg_perr("Error accessing %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n", |
| descr, len, PRIxPTR_WIDTH, phys_addr); |
| msg_perr(MEM_DEV " mmap failed: %s\n", strerror(errno)); |
| #ifdef __linux__ |
| if (EINVAL == errno) { |
| msg_perr("In Linux this error can be caused by the CONFIG_NONPROMISC_DEVMEM (<2.6.27),\n"); |
| msg_perr("CONFIG_STRICT_DEVMEM (>=2.6.27) and CONFIG_X86_PAT kernel options.\n"); |
| msg_perr("Please check if either is enabled in your kernel before reporting a failure.\n"); |
| msg_perr("You can override CONFIG_X86_PAT at boot with the nopat kernel parameter but\n"); |
| msg_perr("disabling the other option unfortunately requires a kernel recompile. Sorry!\n"); |
| } |
| #elif defined (__OpenBSD__) |
| msg_perr("Please set securelevel=-1 in /etc/rc.securelevel " |
| "and reboot, or reboot into\n" |
| "single user mode.\n"); |
| #endif |
| return ERROR_PTR; |
| } |
| |
| if (autocleanup) { |
| struct undo_physmap_data *d = malloc(sizeof(*d)); |
| if (d == NULL) { |
| msg_perr("%s: Out of memory!\n", __func__); |
| physunmap_unaligned(virt_addr, len); |
| return ERROR_PTR; |
| } |
| |
| d->virt_addr = virt_addr; |
| d->len = len; |
| if (register_shutdown(undo_physmap, d) != 0) { |
| msg_perr("%s: Could not register shutdown function!\n", __func__); |
| physunmap_unaligned(virt_addr, len); |
| return ERROR_PTR; |
| } |
| } |
| |
| return virt_addr + offset; |
| } |
| |
| void physunmap_unaligned(void *virt_addr, size_t len) |
| { |
| /* No need to check for zero size, such mappings would have yielded ERROR_PTR. */ |
| if (virt_addr == ERROR_PTR) { |
| msg_perr("Trying to unmap a nonexisting mapping!\n" |
| "Please report a bug at flashprog@flashprog.org\n"); |
| return; |
| } |
| |
| sys_physunmap_unaligned(virt_addr, len); |
| } |
| |
| void physunmap(void *virt_addr, size_t len) |
| { |
| uintptr_t tmp; |
| |
| /* No need to check for zero size, such mappings would have yielded ERROR_PTR. */ |
| if (virt_addr == ERROR_PTR) { |
| msg_perr("Trying to unmap a nonexisting mapping!\n" |
| "Please report a bug at flashprog@flashprog.org\n"); |
| return; |
| } |
| tmp = (uintptr_t)virt_addr; |
| /* We assume that the virtual address of a page-aligned physical address is page-aligned as well. By |
| * extension, rounding a virtual unaligned address as returned by physmap should yield the same offset |
| * between rounded and original virtual address as between rounded and original physical address. |
| */ |
| round_to_page_boundaries(&tmp, &len); |
| virt_addr = (void *)tmp; |
| physunmap_unaligned(virt_addr, len); |
| } |
| |
| void *physmap(const char *descr, uintptr_t phys_addr, size_t len) |
| { |
| return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_NOCLEANUP, PHYSM_ROUND); |
| } |
| |
| void *rphysmap(const char *descr, uintptr_t phys_addr, size_t len) |
| { |
| return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_CLEANUP, PHYSM_ROUND); |
| } |
| |
| void *physmap_ro(const char *descr, uintptr_t phys_addr, size_t len) |
| { |
| return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_ROUND); |
| } |
| |
| void *physmap_ro_unaligned(const char *descr, uintptr_t phys_addr, size_t len) |
| { |
| return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_EXACT); |
| } |
| |
| /* Prevent reordering and/or merging of reads/writes to hardware. |
| * Such reordering and/or merging would break device accesses which depend on the exact access order. |
| */ |
| static inline void sync_primitive(void) |
| { |
| /* This is not needed for... |
| * - x86: uses uncached accesses which have a strongly ordered memory model. |
| * - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model. |
| * - ARM: uses a strongly ordered memory model for device memories. |
| * |
| * See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt |
| */ |
| // cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h |
| #if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \ |
| defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \ |
| defined(_ARCH_PPC64) || defined(__ppc) |
| __asm__("eieio" : : : "memory"); |
| #elif (__sparc__) || defined (__sparc) |
| #if defined(__sparc_v9__) || defined(__sparcv9) |
| /* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like |
| * RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we |
| * use the strongest hardware memory barriers that exist on Sparc V9. */ |
| __asm__ volatile ("membar #Sync" ::: "memory"); |
| #elif defined(__sparc_v8__) || defined(__sparcv8) |
| /* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run |
| * on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable |
| * operation in the V8 instruction set anyway. If you know better then please tell us. */ |
| __asm__ volatile ("stbar"); |
| #else |
| #error Unknown and/or unsupported SPARC instruction set version detected. |
| #endif |
| #endif |
| } |
| |
| void mmio_writeb(uint8_t val, void *addr) |
| { |
| *(volatile uint8_t *) addr = val; |
| sync_primitive(); |
| } |
| |
| void mmio_writew(uint16_t val, void *addr) |
| { |
| *(volatile uint16_t *) addr = val; |
| sync_primitive(); |
| } |
| |
| void mmio_writel(uint32_t val, void *addr) |
| { |
| *(volatile uint32_t *) addr = val; |
| sync_primitive(); |
| } |
| |
| uint8_t mmio_readb(const void *addr) |
| { |
| return *(volatile const uint8_t *) addr; |
| } |
| |
| uint16_t mmio_readw(const void *addr) |
| { |
| return *(volatile const uint16_t *) addr; |
| } |
| |
| uint32_t mmio_readl(const void *addr) |
| { |
| return *(volatile const uint32_t *) addr; |
| } |
| |
| void mmio_readn(const void *addr, uint8_t *buf, size_t len) |
| { |
| memcpy(buf, addr, len); |
| return; |
| } |
| |
| /* Read source-aligned to `align` bytes. `align` should be 4 or 8. */ |
| void mmio_readn_aligned(const void *addr, uint8_t *dst, size_t len, size_t align) |
| { |
| volatile const uint8_t *src = addr; |
| |
| /* align */ |
| for (; (uintptr_t)src % align && len > 0; --len, ++dst, ++src) |
| *dst = *src; |
| |
| /* copy aligned */ |
| if (align == 4) { |
| for (; len >= align; len -= align, dst += align, src += align) |
| *(uint32_t *)dst = *(volatile const uint32_t *)src; |
| } else if (align == 8) { |
| for (; len >= align; len -= align, dst += align, src += align) |
| *(uint64_t *)dst = *(volatile const uint64_t *)src; |
| } |
| |
| /* residue */ |
| for (; len > 0; --len, ++dst, ++src) |
| *dst = *src; |
| } |
| |
| void mmio_le_writeb(uint8_t val, void *addr) |
| { |
| mmio_writeb(cpu_to_le8(val), addr); |
| } |
| |
| void mmio_le_writew(uint16_t val, void *addr) |
| { |
| mmio_writew(cpu_to_le16(val), addr); |
| } |
| |
| void mmio_le_writel(uint32_t val, void *addr) |
| { |
| mmio_writel(cpu_to_le32(val), addr); |
| } |
| |
| uint8_t mmio_le_readb(const void *addr) |
| { |
| return le_to_cpu8(mmio_readb(addr)); |
| } |
| |
| uint16_t mmio_le_readw(const void *addr) |
| { |
| return le_to_cpu16(mmio_readw(addr)); |
| } |
| |
| uint32_t mmio_le_readl(const void *addr) |
| { |
| return le_to_cpu32(mmio_readl(addr)); |
| } |
| |
| enum mmio_write_type { |
| mmio_write_type_b, |
| mmio_write_type_w, |
| mmio_write_type_l, |
| }; |
| |
| struct undo_mmio_write_data { |
| void *addr; |
| int reg; |
| enum mmio_write_type type; |
| union { |
| uint8_t bdata; |
| uint16_t wdata; |
| uint32_t ldata; |
| }; |
| }; |
| |
| static int undo_mmio_write(void *p) |
| { |
| struct undo_mmio_write_data *data = p; |
| msg_pdbg("Restoring MMIO space at %p\n", data->addr); |
| switch (data->type) { |
| case mmio_write_type_b: |
| mmio_writeb(data->bdata, data->addr); |
| break; |
| case mmio_write_type_w: |
| mmio_writew(data->wdata, data->addr); |
| break; |
| case mmio_write_type_l: |
| mmio_writel(data->ldata, data->addr); |
| break; |
| } |
| /* p was allocated in register_undo_mmio_write. */ |
| free(p); |
| return 0; |
| } |
| |
| #define register_undo_mmio_write(a, c) \ |
| { \ |
| struct undo_mmio_write_data *undo_mmio_write_data; \ |
| undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \ |
| if (!undo_mmio_write_data) { \ |
| msg_gerr("Out of memory!\n"); \ |
| exit(1); \ |
| } \ |
| undo_mmio_write_data->addr = a; \ |
| undo_mmio_write_data->type = mmio_write_type_##c; \ |
| undo_mmio_write_data->c##data = mmio_read##c(a); \ |
| register_shutdown(undo_mmio_write, undo_mmio_write_data); \ |
| } |
| |
| #define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b) |
| #define register_undo_mmio_writew(a) register_undo_mmio_write(a, w) |
| #define register_undo_mmio_writel(a) register_undo_mmio_write(a, l) |
| |
| void rmmio_writeb(uint8_t val, void *addr) |
| { |
| register_undo_mmio_writeb(addr); |
| mmio_writeb(val, addr); |
| } |
| |
| void rmmio_writew(uint16_t val, void *addr) |
| { |
| register_undo_mmio_writew(addr); |
| mmio_writew(val, addr); |
| } |
| |
| void rmmio_writel(uint32_t val, void *addr) |
| { |
| register_undo_mmio_writel(addr); |
| mmio_writel(val, addr); |
| } |
| |
| void rmmio_le_writeb(uint8_t val, void *addr) |
| { |
| register_undo_mmio_writeb(addr); |
| mmio_le_writeb(val, addr); |
| } |
| |
| void rmmio_le_writew(uint16_t val, void *addr) |
| { |
| register_undo_mmio_writew(addr); |
| mmio_le_writew(val, addr); |
| } |
| |
| void rmmio_le_writel(uint32_t val, void *addr) |
| { |
| register_undo_mmio_writel(addr); |
| mmio_le_writel(val, addr); |
| } |
| |
| void rmmio_valb(void *addr) |
| { |
| register_undo_mmio_writeb(addr); |
| } |
| |
| void rmmio_valw(void *addr) |
| { |
| register_undo_mmio_writew(addr); |
| } |
| |
| void rmmio_vall(void *addr) |
| { |
| register_undo_mmio_writel(addr); |
| } |