blob: e260bd9729892f925ed6e2e2d2362a328ed4bf02 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "flash.h"
#include "hwaccess_physmap.h"
#include "programmer.h"
#include "spi.h"
#define SPI100_FIFO_SIZE 71
struct spi100 {
uint8_t *spibar;
uint8_t *memory;
size_t mapped_len;
bool no_4ba_mmap;
unsigned int altspeed;
};
static void spi100_write8(const struct spi100 *spi100, unsigned int reg, uint8_t val)
{
mmio_writeb(val, spi100->spibar + reg);
}
static void spi100_write16(const struct spi100 *spi100, unsigned int reg, uint16_t val)
{
mmio_writew(val, spi100->spibar + reg);
}
static void spi100_writen(const struct spi100 *spi100, unsigned int reg, const uint8_t *data, size_t len)
{
for (; len > 0; --len, ++reg, ++data)
mmio_writeb(*data, spi100->spibar + reg);
}
static uint8_t spi100_read8(const struct spi100 *spi100, unsigned int reg)
{
return mmio_readb(spi100->spibar + reg);
}
static uint16_t spi100_read16(const struct spi100 *spi100, unsigned int reg)
{
return mmio_readw(spi100->spibar + reg);
}
static uint32_t spi100_read32(const struct spi100 *spi100, unsigned int reg)
{
return mmio_readl(spi100->spibar + reg);
}
static void spi100_readn(const struct spi100 *spi100, unsigned int reg, uint8_t *data, size_t len)
{
mmio_readn_aligned(spi100->spibar + reg, data, len, 4);
}
static int spi100_mmap_read(struct flashctx *flash, uint8_t *dst, unsigned int start, unsigned int len)
{
const struct spi100 *const spi100 = flash->mst.spi->data;
mmio_readn_aligned(spi100->memory + start, dst, len, 8);
return 0;
}
static int spi100_check_readwritecnt(const unsigned int writecnt, const unsigned int readcnt)
{
if (writecnt < 1) {
msg_perr("ERROR: SPI controller needs to send at least 1 byte.\n");
return SPI_INVALID_LENGTH;
}
if (writecnt - 1 > SPI100_FIFO_SIZE) {
msg_perr("ERROR: SPI controller can not send %u bytes, it is limited to %u bytes.\n",
writecnt, SPI100_FIFO_SIZE + 1);
return SPI_INVALID_LENGTH;
}
const unsigned int maxreadcnt = SPI100_FIFO_SIZE - (writecnt - 1);
if (readcnt > maxreadcnt) {
msg_perr("ERROR: SPI controller can not receive %u bytes for this command,\n"
"it is limited to %u bytes write+read count.\n",
readcnt, SPI100_FIFO_SIZE + 1);
return SPI_INVALID_LENGTH;
}
return 0;
}
static int spi100_send_command(const struct flashctx *const flash,
const unsigned int writecnt, const unsigned int readcnt,
const unsigned char *const writearr, unsigned char *const readarr)
{
const struct spi100 *const spi100 = flash->mst.spi->data;
int ret = spi100_check_readwritecnt(writecnt, readcnt);
if (ret)
return ret;
spi100_write8(spi100, 0x45, writearr[0]); /* First "command" byte is sent separately. */
spi100_write8(spi100, 0x48, writecnt - 1);
spi100_write8(spi100, 0x4b, readcnt);
if (writecnt > 1)
spi100_writen(spi100, 0x80, &writearr[1], writecnt - 1);
/* Check if the command/address is allowed */
const uint32_t spi_cntrl0 = spi100_read32(spi100, 0x00);
if (spi_cntrl0 & (1 << 21)) {
msg_perr("ERROR: Illegal access for opcode 0x%02x!", writearr[0]);
return SPI_INVALID_OPCODE;
} else {
msg_pspew("%s: executing opcode 0x%02x.\n", __func__, writearr[0]);
}
/* Trigger command */
spi100_write8(spi100, 0x47, BIT(7));
/* Wait for completion */
int timeout_us = 10*1000*1000;
uint32_t spistatus;
while (((spistatus = spi100_read32(spi100, 0x4c)) & BIT(31)) && timeout_us--)
programmer_delay(1);
if (spistatus & BIT(31)) {
msg_perr("ERROR: SPI transfer timed out (0x%08x)!\n", spistatus);
return SPI_PROGRAMMER_ERROR;
}
msg_pspew("%s: spistatus: 0x%08x\n", __func__, spistatus);
if (readcnt)
spi100_readn(spi100, 0x80 + writecnt - 1, readarr, readcnt);
return 0;
}
static int spi100_read(struct flashctx *const flash, uint8_t *buf, unsigned int start, unsigned int len)
{
const struct spi100 *const spi100 = flash->mst.spi->data;
const chipsize_t chip_size = flashprog_flash_getsize(flash);
/* Don't consider memory mapping at all
if 4BA chips are not mapped as expected. */
if (chip_size > 16*MiB && spi100->no_4ba_mmap)
return default_spi_read(flash, buf, start, len);
/* Where in the flash does the memory mapped part start?
Can be negative if the mapping is bigger than the chip. */
const long long mapped_start = chip_size - spi100->mapped_len;
/* Use SPI100 engine for data outside the memory-mapped range. */
if ((long long)start < mapped_start) {
const chipsize_t unmapped_len = MIN(len, mapped_start - start);
const int ret = default_spi_read(flash, buf, start, unmapped_len);
if (ret)
return ret;
start += unmapped_len;
buf += unmapped_len;
len -= unmapped_len;
}
/* Translate `start` to memory-mapped offset. */
start -= mapped_start;
flashprog_read_chunked(flash, buf, start, len, MAX_DATA_READ_UNLIMITED, spi100_mmap_read);
return 0;
}
static int spi100_shutdown(void *data)
{
struct spi100 *const spi100 = data;
const uint16_t speed_cfg = spi100_read16(spi100, 0x22);
spi100_write16(spi100, 0x22, (speed_cfg & ~0xf0) | spi100->altspeed << 4);
free(spi100);
return 0;
}
static struct spi_master spi100_master = {
.features = SPI_MASTER_4BA | SPI_MASTER_NO_4BA_MODES,
.max_data_read = SPI100_FIFO_SIZE - 4, /* Account for up to 4 address bytes. */
.max_data_write = SPI100_FIFO_SIZE - 4,
.command = spi100_send_command,
.multicommand = default_spi_send_multicommand,
.read = spi100_read,
.write_256 = default_spi_write_256,
.probe_opcode = default_spi_probe_opcode,
.shutdown = spi100_shutdown,
};
const char *const spimodes[] = {
"Normal read (up to 33MHz)",
"Reserved",
"Dual IO (1-1-2)",
"Quad IO (1-1-4)",
"Dual IO (1-2-2)",
"Quad IO (1-1-4)",
"Normal read (up to 66MHz)",
"Fast Read",
};
const struct {
unsigned int khz;
const char *speed;
} spispeeds[] = {
{ 66666, "66.66 MHz" },
{ 33333, "33.33 MHz" },
{ 22222, "22.22 MHz" },
{ 16666, "16.66 MHz" },
{ 100000, "100 MHz" },
{ 800, "800 kHz" },
{ 0, "Reserved" },
{ 0, "Reserved" },
};
static void spi100_print(const struct spi100 *const spi100)
{
const uint32_t spi_cntrl0 = spi100_read32(spi100, 0x00);
msg_pdbg("(0x%08" PRIx32 ") ", spi_cntrl0);
msg_pdbg("SpiArbEnable=%u, ", spi_cntrl0 >> 19 & 1);
msg_pdbg("IllegalAccess=%u, ", spi_cntrl0 >> 21 & 1);
msg_pdbg("SpiAccessMacRomEn=%u, ", spi_cntrl0 >> 22 & 1);
msg_pdbg("SpiHostAccessRomEn=%u,\n", spi_cntrl0 >> 23 & 1);
msg_pdbg(" ");
msg_pdbg("ArbWaitCount=%u, ", spi_cntrl0 >> 24 & 7);
msg_pdbg("SpiBridgeDisable=%u, ", spi_cntrl0 >> 27 & 1);
msg_pdbg("SpiClkGate=%u,\n", spi_cntrl0 >> 28 & 1);
msg_pdbg(" ");
msg_pdbg("SpiReadMode=%s, ", spimodes[(spi_cntrl0 >> 28 & 6) | (spi_cntrl0 >> 18 & 1)]);
msg_pdbg("SpiBusy=%u\n", spi_cntrl0 >> 31 & 1);
const uint8_t alt_spi_cs = spi100_read8(spi100, 0x1d);
msg_pdbg("Using SPI_CS%u\n", alt_spi_cs & 0x3);
const uint16_t speed_cfg = spi100_read16(spi100, 0x22);
msg_pdbg("NormSpeed: %s\n", spispeeds[speed_cfg >> 12 & 0xf].speed);
msg_pdbg("FastSpeed: %s\n", spispeeds[speed_cfg >> 8 & 0xf].speed);
msg_pdbg("AltSpeed: %s\n", spispeeds[speed_cfg >> 4 & 0xf].speed);
msg_pdbg("TpmSpeed: %s\n", spispeeds[speed_cfg >> 0 & 0xf].speed);
}
static void spi100_check_4ba(struct spi100 *const spi100)
{
const uint16_t rom2_addr_override = spi100_read16(spi100, 0x30);
const uint32_t addr32_ctrl0 = spi100_read32(spi100, 0x50);
const uint32_t addr32_ctrl3 = spi100_read32(spi100, 0x5c);
spi100->no_4ba_mmap = false;
/* Most bits are undocumented ("reserved"), so we play safe. */
if (rom2_addr_override != 0x14c0) {
msg_pdbg("ROM2 address override *not* in default configuration.\n");
spi100->no_4ba_mmap = true;
}
/* Check if the controller would use 4-byte addresses by itself. */
if (addr32_ctrl0 & 1) {
msg_pdbg("Memory-mapped access uses 32-bit addresses.\n");
} else {
msg_pdbg("Memory-mapped access uses 24-bit addresses.\n");
spi100->no_4ba_mmap = true;
}
/* Another override (xor'ed) for the most-significant address bits. */
if (addr32_ctrl3 & 0xff) {
msg_pdbg("SPI ROM page bits set: 0x%02x\n", addr32_ctrl3 & 0xff);
spi100->no_4ba_mmap = true;
}
}
static void spi100_set_altspeed(struct spi100 *const spi100)
{
const uint16_t speed_cfg = spi100_read16(spi100, 0x22);
const unsigned int normspeed = speed_cfg >> 12 & 0xf;
spi100->altspeed = speed_cfg >> 4 & 0xf;
/* Set SPI speed to 33MHz but not higher than `normal read` speed */
unsigned int altspeed;
if (spispeeds[normspeed].khz != 0 && spispeeds[normspeed].khz < 33333)
altspeed = normspeed;
else
altspeed = 1;
if (altspeed != spi100->altspeed) {
msg_pinfo("Setting SPI speed to %s.\n", spispeeds[altspeed].speed);
spi100_write16(spi100, 0x22, (speed_cfg & ~0xf0) | altspeed << 4);
}
}
int amd_spi100_probe(void *const spibar, void *const memory_mapping, const size_t mapped_len)
{
struct spi100 *const spi100 = malloc(sizeof(*spi100));
if (!spi100) {
msg_perr("Out of memory!\n");
return ERROR_FATAL;
}
spi100->spibar = spibar;
spi100->memory = memory_mapping;
spi100->mapped_len = mapped_len;
spi100_print(spi100);
spi100_set_altspeed(spi100);
spi100_check_4ba(spi100);
return register_spi_master(&spi100_master, 0, spi100);
}