blob: 8d5e5255bb144ff793bb00f56183b43935f8a884 [file] [log] [blame]
/*
* This file is part of the flashrom project.
* It handles everything related to status registers of the JEDEC family 25.
*
* Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2008 coresystems GmbH
* Copyright (C) 2008 Ronald Hoogenboom <ronald@zonnet.nl>
* Copyright (C) 2012 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "flash.h"
#include "chipdrivers.h"
#include "spi_command.h"
#include "spi.h"
/* === Generic functions === */
/*
* Writing SR2 or higher with an extended WRSR command requires
* writing all lower SRx along with it, so just read the lower
* SRx and write them back.
*/
static int spi_prepare_wrsr_ext(
uint8_t write_cmd[4], size_t *const write_cmd_len,
const struct flashctx *const flash,
const enum flash_reg reg, const uint8_t value)
{
enum flash_reg reg_it;
size_t i = 0;
write_cmd[i++] = JEDEC_WRSR;
for (reg_it = STATUS1; reg_it < reg; ++reg_it) {
uint8_t sr;
if (spi_read_register(flash, reg_it, &sr)) {
msg_cerr("Writing SR%d failed: failed to read SR%d for writeback.\n",
reg - STATUS1 + 1, reg_it - STATUS1 + 1);
return 1;
}
write_cmd[i++] = sr;
}
write_cmd[i++] = value;
*write_cmd_len = i;
return 0;
}
int spi_write_register(const struct flashctx *flash, enum flash_reg reg,
uint8_t value, enum wrsr_target target)
{
int feature_bits = flash->chip->feature_bits;
uint8_t write_cmd[4];
size_t write_cmd_len = 0;
/*
* Create SPI write command sequence based on the destination register
* and the chip's supported command set.
*/
switch (reg) {
case STATUS1:
write_cmd[0] = JEDEC_WRSR;
write_cmd[1] = value;
write_cmd_len = JEDEC_WRSR_OUTSIZE;
break;
case STATUS2:
if (feature_bits & FEATURE_WRSR2) {
write_cmd[0] = JEDEC_WRSR2;
write_cmd[1] = value;
write_cmd_len = JEDEC_WRSR2_OUTSIZE;
break;
}
if (feature_bits & FEATURE_WRSR_EXT2) {
if (spi_prepare_wrsr_ext(write_cmd, &write_cmd_len, flash, reg, value))
return 1;
break;
}
msg_cerr("Cannot write SR2: unsupported by chip\n");
return 1;
case STATUS3:
if (feature_bits & FEATURE_WRSR3) {
write_cmd[0] = JEDEC_WRSR3;
write_cmd[1] = value;
write_cmd_len = JEDEC_WRSR3_OUTSIZE;
break;
}
if ((feature_bits & FEATURE_WRSR_EXT3) == FEATURE_WRSR_EXT3) {
if (spi_prepare_wrsr_ext(write_cmd, &write_cmd_len, flash, reg, value))
return 1;
break;
}
msg_cerr("Cannot write SR3: unsupported by chip\n");
return 1;
case SECURITY:
/*
* Security register doesn't have a normal write operation. Instead,
* there are separate commands that set individual OTP bits.
*/
msg_cerr("Cannot write SECURITY: unsupported by design\n");
return 1;
case CONFIG:
/*
* This one is read via a separate command, but written as if it's SR2
* in FEATURE_WRSR_EXT2 case of WRSR command.
*/
write_cmd[0] = JEDEC_WRSR;
if (spi_read_register(flash, STATUS1, &write_cmd[1])) {
msg_cerr("Writing CONFIG failed: failed to read SR1 for writeback.\n");
return 1;
}
write_cmd[2] = value;
write_cmd_len = 3;
break;
default:
msg_cerr("Cannot write register: unknown register\n");
return 1;
}
uint8_t enable_cmd;
if (((feature_bits & FEATURE_WRSR_EITHER) == 0) && (target & WRSR_VOLATILE_BITS)) {
/* TODO: check database and remove this case! */
msg_cwarn("Missing status register write definition, assuming EWSR is needed\n");
enable_cmd = JEDEC_EWSR;
} else if ((feature_bits & FEATURE_WRSR_WREN) && (target & WRSR_NON_VOLATILE_BITS)) {
enable_cmd = JEDEC_WREN;
} else if ((feature_bits & FEATURE_WRSR_EWSR) && (target & WRSR_VOLATILE_BITS)) {
enable_cmd = JEDEC_EWSR;
} else {
msg_cerr("Chip doesn't support %svolatile status register writes.\n",
target & WRSR_NON_VOLATILE_BITS ? "non-" : "");
return 1;
}
struct spi_command cmds[] = {
{
.io_mode = spi_current_io_mode(flash),
.opcode_len = JEDEC_WREN_OUTSIZE,
.writearr = &enable_cmd,
}, {
.io_mode = spi_current_io_mode(flash),
.opcode_len = 1,
.write_len = write_cmd_len - 1,
.writearr = write_cmd,
},
NULL_SPI_CMD
};
int result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
/*
* WRSR performs a self-timed erase before the changes take effect.
* This may take 50-85 ms in most cases, and some chips apparently
* allow running RDSR only once. Therefore pick an initial delay of
* 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
*
* Newer chips with multiple status registers (SR2 etc.) are unlikely
* to have problems with multiple RDSR commands, so only wait for the
* initial 100 ms if the register we wrote to was SR1.
*/
int delay_ms = 5000;
if (reg == STATUS1) {
programmer_delay(100 * 1000);
delay_ms -= 100;
}
for (; delay_ms > 0; delay_ms -= 10) {
uint8_t status;
result = spi_read_register(flash, STATUS1, &status);
if (result)
return result;
if ((status & SPI_SR_WIP) == 0)
return 0;
programmer_delay(10 * 1000);
}
msg_cerr("Error: WIP bit after WRSR never cleared\n");
return TIMEOUT_ERROR;
}
int spi_read_register(const struct flashctx *flash, enum flash_reg reg, uint8_t *value)
{
int feature_bits = flash->chip->feature_bits;
uint8_t read_cmd;
switch (reg) {
case STATUS1:
read_cmd = JEDEC_RDSR;
break;
case STATUS2:
if (feature_bits & (FEATURE_WRSR_EXT2 | FEATURE_WRSR2)) {
read_cmd = JEDEC_RDSR2;
break;
}
msg_cerr("Cannot read SR2: unsupported by chip\n");
return 1;
case STATUS3:
if ((feature_bits & FEATURE_WRSR_EXT3) == FEATURE_WRSR_EXT3
|| (feature_bits & FEATURE_WRSR3)) {
read_cmd = JEDEC_RDSR3;
break;
}
msg_cerr("Cannot read SR3: unsupported by chip\n");
return 1;
case SECURITY:
read_cmd = JEDEC_RDSCUR;
break;
case CONFIG:
read_cmd = JEDEC_RDCR;
break;
default:
msg_cerr("Cannot read register: unknown register\n");
return 1;
}
/* FIXME: No workarounds for driver/hardware bugs in generic code. */
/* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
uint8_t readarr[2];
int ret = spi_send_command(flash, sizeof(read_cmd), sizeof(readarr), &read_cmd, readarr);
if (ret) {
msg_cerr("Register read failed!\n");
return ret;
}
*value = readarr[0];
return 0;
}
static int spi_restore_status(struct flashctx *flash, uint8_t status)
{
msg_cdbg("restoring chip status (0x%02x)\n", status);
return spi_write_register(flash, STATUS1, status, WRSR_EITHER);
}
/* A generic block protection disable.
* Tests if a protection is enabled with the block protection mask (bp_mask) and returns success otherwise.
* Tests if the register bits are locked with the lock_mask (lock_mask).
* Tests if a hardware protection is active (i.e. low pin/high bit value) with the write protection mask
* (wp_mask) and bails out in that case.
* If there are register lock bits set we try to disable them by unsetting those bits of the previous register
* contents that are set in the lock_mask. We then check if removing the lock bits has worked and continue as if
* they never had been engaged:
* If the lock bits are out of the way try to disable engaged protections.
* To support uncommon global unprotects (e.g. on most AT2[56]xx1(A)) unprotect_mask can be used to force
* bits to 0 additionally to those set in bp_mask and lock_mask. Only bits set in unprotect_mask are potentially
* preserved when doing the final unprotect.
*
* To sum up:
* bp_mask: set those bits that correspond to the bits in the status register that indicate an active protection
* (which should be unset after this function returns).
* lock_mask: set the bits that correspond to the bits that lock changing the bits above.
* wp_mask: set the bits that correspond to bits indicating non-software revocable protections.
* unprotect_mask: set the bits that should be preserved if possible when unprotecting.
*/
static int spi_disable_blockprotect_generic(struct flashctx *flash, uint8_t bp_mask, uint8_t lock_mask, uint8_t wp_mask, uint8_t unprotect_mask)
{
uint8_t status;
int result;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
if ((status & bp_mask) == 0) {
msg_cdbg2("Block protection is disabled.\n");
return 0;
}
/* Restore status register content upon exit in finalize_flash_access(). */
register_chip_restore(spi_restore_status, flash, status);
msg_cdbg("Some block protection in effect, disabling... ");
if ((status & lock_mask) != 0) {
msg_cdbg("\n\tNeed to disable the register lock first... ");
if (wp_mask != 0 && (status & wp_mask) == 0) {
msg_cerr("Hardware protection is active, disabling write protection is impossible.\n");
return 1;
}
/* All bits except the register lock bit (often called SPRL, SRWD, WPEN) are readonly. */
result = spi_write_register(flash, STATUS1, status & ~lock_mask, WRSR_EITHER);
if (result) {
msg_cerr("Could not write status register 1.\n");
return result;
}
ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
if ((status & lock_mask) != 0) {
msg_cerr("Unsetting lock bit(s) failed.\n");
return 1;
}
msg_cdbg("done.\n");
}
/* Global unprotect. Make sure to mask the register lock bit as well. */
result = spi_write_register(flash, STATUS1,
status & ~(bp_mask | lock_mask) & unprotect_mask, WRSR_EITHER);
if (result) {
msg_cerr("Could not write status register 1.\n");
return result;
}
ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
if ((status & bp_mask) != 0) {
msg_cerr("Block protection could not be disabled!\n");
if (flash->chip->printlock)
flash->chip->printlock(flash);
return 1;
}
msg_cdbg("disabled.\n");
return 0;
}
/* A common block protection disable that tries to unset the status register bits masked by 0x3C. */
int spi_disable_blockprotect(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x3C, 0, 0, 0xFF);
}
int spi_disable_blockprotect_sst26_global_unprotect(struct flashctx *flash)
{
int result = spi_write_enable(flash);
if (result)
return result;
static const unsigned char cmd[] = { 0x98 }; /* ULBPR */
result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (result)
msg_cerr("ULBPR failed\n");
return result;
}
/* A common block protection disable that tries to unset the status register bits masked by 0x0C (BP0-1) and
* protected/locked by bit #7. Useful when bits 4-5 may be non-0). */
int spi_disable_blockprotect_bp1_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 0, 0xFF);
}
/* A common block protection disable that tries to unset the status register bits masked by 0x1C (BP0-2) and
* protected/locked by bit #7. Useful when bit #5 is neither a protection bit nor reserved (and hence possibly
* non-0). */
int spi_disable_blockprotect_bp2_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x1C, 1 << 7, 0, 0xFF);
}
/* A common block protection disable that tries to unset the status register bits masked by 0x3C (BP0-3) and
* protected/locked by bit #7. */
int spi_disable_blockprotect_bp3_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x3C, 1 << 7, 0, 0xFF);
}
/* A common block protection disable that tries to unset the status register bits masked by 0x7C (BP0-4) and
* protected/locked by bit #7. */
int spi_disable_blockprotect_bp4_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x7C, 1 << 7, 0, 0xFF);
}
static void spi_prettyprint_status_register_hex(uint8_t status)
{
msg_cdbg("Chip status register is 0x%02x.\n", status);
}
/* Common highest bit: Status Register Write Disable (SRWD) or Status Register Protect (SRP). */
static void spi_prettyprint_status_register_srwd(uint8_t status)
{
msg_cdbg("Chip status register: Status Register Write Disable (SRWD, SRP, ...) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
/* Common highest bit: Block Protect Write Disable (BPL). */
static void spi_prettyprint_status_register_bpl(uint8_t status)
{
msg_cdbg("Chip status register: Block Protect Write Disable (BPL) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
/* Common lowest 2 bits: WEL and WIP. */
static void spi_prettyprint_status_register_welwip(uint8_t status)
{
msg_cdbg("Chip status register: Write Enable Latch (WEL) is %sset\n",
(status & (1 << 1)) ? "" : "not ");
msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is %sset\n",
(status & (1 << 0)) ? "" : "not ");
}
/* Common block protection (BP) bits. */
static void spi_prettyprint_status_register_bp(uint8_t status, int bp)
{
switch (bp) {
case 4:
msg_cdbg("Chip status register: Block Protect 4 (BP4) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
/* Fall through. */
case 3:
msg_cdbg("Chip status register: Block Protect 3 (BP3) is %sset\n",
(status & (1 << 5)) ? "" : "not ");
/* Fall through. */
case 2:
msg_cdbg("Chip status register: Block Protect 2 (BP2) is %sset\n",
(status & (1 << 4)) ? "" : "not ");
/* Fall through. */
case 1:
msg_cdbg("Chip status register: Block Protect 1 (BP1) is %sset\n",
(status & (1 << 3)) ? "" : "not ");
/* Fall through. */
case 0:
msg_cdbg("Chip status register: Block Protect 0 (BP0) is %sset\n",
(status & (1 << 2)) ? "" : "not ");
}
}
/* Unnamed bits. */
void spi_prettyprint_status_register_bit(uint8_t status, int bit)
{
msg_cdbg("Chip status register: Bit %i is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
}
int spi_prettyprint_status_register_plain(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
return 0;
}
/* Print the plain hex value and the welwip bits only. */
int spi_prettyprint_status_register_default_welwip(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Works for many chips of the
* AMIC A25L series
* and MX MX25L512
*/
int spi_prettyprint_status_register_bp1_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bp(status, 1);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Works for many chips of the
* AMIC A25L series
* PMC Pm25LD series
*/
int spi_prettyprint_status_register_bp2_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Works for many chips of the
* ST M25P series
* MX MX25L series
*/
int spi_prettyprint_status_register_bp3_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bp(status, 3);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_bp4_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bp(status, 4);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_bp2_bpl(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_bpl(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_bp2_tb_bpl(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_bpl(status);
spi_prettyprint_status_register_bit(status, 6);
msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* === Amic ===
* FIXME: spi_disable_blockprotect is incorrect but works fine for chips using
* spi_prettyprint_status_register_bp1_srwd or
* spi_prettyprint_status_register_bp2_srwd.
* FIXME: spi_disable_blockprotect is incorrect and will fail for chips using
* spi_prettyprint_status_register_amic_a25l032 if those have locks controlled
* by the second status register.
*/
int spi_prettyprint_status_register_amic_a25l032(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
msg_cdbg("Chip status register: Sector Protect Size (SEC) is %i KB\n", (status & (1 << 6)) ? 4 : 64);
msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
msg_cdbg("Chip status register 2 is NOT decoded!\n");
return 0;
}
/* === Atmel === */
static void spi_prettyprint_status_register_atmel_at25_wpen(uint8_t status)
{
msg_cdbg("Chip status register: Write Protect Enable (WPEN) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
static void spi_prettyprint_status_register_atmel_at25_srpl(uint8_t status)
{
msg_cdbg("Chip status register: Sector Protection Register Lock (SRPL) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
static void spi_prettyprint_status_register_atmel_at25_epewpp(uint8_t status)
{
msg_cdbg("Chip status register: Erase/Program Error (EPE) is %sset\n",
(status & (1 << 5)) ? "" : "not ");
msg_cdbg("Chip status register: WP# pin (WPP) is %sasserted\n",
(status & (1 << 4)) ? "not " : "");
}
static void spi_prettyprint_status_register_atmel_at25_swp(uint8_t status)
{
msg_cdbg("Chip status register: Software Protection Status (SWP): ");
switch (status & (3 << 2)) {
case 0x0 << 2:
msg_cdbg("no sectors are protected\n");
break;
case 0x1 << 2:
msg_cdbg("some sectors are protected\n");
/* FIXME: Read individual Sector Protection Registers. */
break;
case 0x3 << 2:
msg_cdbg("all sectors are protected\n");
break;
default:
msg_cdbg("reserved for future use\n");
break;
}
}
int spi_prettyprint_status_register_at25df(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_srpl(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_atmel_at25_epewpp(status);
spi_prettyprint_status_register_atmel_at25_swp(status);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25df_sec(struct flashctx *flash)
{
/* FIXME: We should check the security lockdown. */
msg_cdbg("Ignoring security lockdown (if present)\n");
msg_cdbg("Ignoring status register byte 2\n");
return spi_prettyprint_status_register_at25df(flash);
}
/* used for AT25F512, AT25F1024(A), AT25F2048 */
int spi_prettyprint_status_register_at25f(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bp(status, 1);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25f512a(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bit(status, 3);
spi_prettyprint_status_register_bp(status, 0);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25f512b(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_srpl(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_atmel_at25_epewpp(status);
spi_prettyprint_status_register_bit(status, 3);
spi_prettyprint_status_register_bp(status, 0);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25f4096(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25fs010(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is "
"%sset\n", (status & (1 << 6)) ? "" : "not ");
msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
"%sset\n", (status & (1 << 5)) ? "" : "not ");
spi_prettyprint_status_register_bit(status, 4);
msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
"%sset\n", (status & (1 << 3)) ? "" : "not ");
msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
"%sset\n", (status & (1 << 2)) ? "" : "not ");
/* FIXME: Pretty-print detailed sector protection status. */
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25fs040(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bp(status, 4);
/* FIXME: Pretty-print detailed sector protection status. */
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at26df081a(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_srpl(status);
msg_cdbg("Chip status register: Sequential Program Mode Status (SPM) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_atmel_at25_epewpp(status);
spi_prettyprint_status_register_atmel_at25_swp(status);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Some Atmel DataFlash chips support per sector protection bits and the write protection bits in the status
* register do indicate if none, some or all sectors are protected. It is possible to globally (un)lock all
* sectors at once by writing 0 not only the protection bits (2 and 3) but also completely unrelated bits (4 and
* 5) which normally are not touched.
* Affected are all known Atmel chips matched by AT2[56]D[FLQ]..1A? but the AT26DF041. */
int spi_disable_blockprotect_at2x_global_unprotect(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 1 << 4, 0x00);
}
int spi_disable_blockprotect_at2x_global_unprotect_sec(struct flashctx *flash)
{
/* FIXME: We should check the security lockdown. */
msg_cinfo("Ignoring security lockdown (if present)\n");
return spi_disable_blockprotect_at2x_global_unprotect(flash);
}
int spi_disable_blockprotect_at25f(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 0, 0xFF);
}
int spi_disable_blockprotect_at25f512a(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x04, 1 << 7, 0, 0xFF);
}
int spi_disable_blockprotect_at25f512b(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x04, 1 << 7, 1 << 4, 0xFF);
}
int spi_disable_blockprotect_at25fs010(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x6C, 1 << 7, 0, 0xFF);
}
int spi_disable_blockprotect_at25fs040(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x7C, 1 << 7, 0, 0xFF);
}
/* === Eon === */
int spi_prettyprint_status_register_en25s_wp(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
msg_cdbg("Chip status register: WP# disable (WPDIS) is %sabled\n", (status & (1 << 6)) ? "en " : "dis");
spi_prettyprint_status_register_bp(status, 3);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* === Intel/Numonyx/Micron - Spansion === */
int spi_disable_blockprotect_n25q(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x5C, 1 << 7, 0, 0xFF);
}
int spi_prettyprint_status_register_n25q(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
if (flash->chip->total_size <= 32 / 8 * 1024) /* N25Q16 and N25Q32: reserved */
spi_prettyprint_status_register_bit(status, 6);
else
msg_cdbg("Chip status register: Block Protect 3 (BP3) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Used by Intel/Numonyx S33 and Spansion S25FL-S chips */
/* TODO: Clear P_FAIL and E_FAIL with Clear SR Fail Flags Command (30h) here? */
int spi_disable_blockprotect_bp2_ep_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_bp2_srwd(flash);
}
/* Used by Intel/Numonyx S33 and Spansion S25FL-S chips */
int spi_prettyprint_status_register_bp2_ep_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
msg_cdbg("Chip status register: Program Fail Flag (P_FAIL) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
msg_cdbg("Chip status register: Erase Fail Flag (E_FAIL) is %sset\n",
(status & (1 << 5)) ? "" : "not ");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* === SST === */
static void spi_prettyprint_status_register_sst25_common(uint8_t status)
{
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_bpl(status);
msg_cdbg("Chip status register: Auto Address Increment Programming (AAI) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_bp(status, 3);
spi_prettyprint_status_register_welwip(status);
}
int spi_prettyprint_status_register_sst25(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_sst25_common(status);
return 0;
}
int spi_prettyprint_status_register_sst25vf016(struct flashctx *flash)
{
static const char *const bpt[] = {
"none",
"1F0000H-1FFFFFH",
"1E0000H-1FFFFFH",
"1C0000H-1FFFFFH",
"180000H-1FFFFFH",
"100000H-1FFFFFH",
"all", "all"
};
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_sst25_common(status);
msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]);
return 0;
}
int spi_prettyprint_status_register_sst25vf040b(struct flashctx *flash)
{
static const char *const bpt[] = {
"none",
"0x70000-0x7ffff",
"0x60000-0x7ffff",
"0x40000-0x7ffff",
"all blocks", "all blocks", "all blocks", "all blocks"
};
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_sst25_common(status);
msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]);
return 0;
}