| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger |
| * Copyright (C) 2008 coresystems GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /* |
| * Contains the common SPI chip driver functions |
| */ |
| |
| #include <string.h> |
| #include "flash.h" |
| #include "flashchips.h" |
| #include "chipdrivers.h" |
| #include "programmer.h" |
| #include "spi.h" |
| |
| void spi_prettyprint_status_register(struct flashchip *flash); |
| |
| static int spi_rdid(unsigned char *readarr, int bytes) |
| { |
| const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID }; |
| int ret; |
| int i; |
| |
| ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); |
| if (ret) |
| return ret; |
| msg_cspew("RDID returned"); |
| for (i = 0; i < bytes; i++) |
| msg_cspew(" 0x%02x", readarr[i]); |
| msg_cspew(". "); |
| return 0; |
| } |
| |
| static int spi_rems(unsigned char *readarr) |
| { |
| unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 }; |
| uint32_t readaddr; |
| int ret; |
| |
| ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); |
| if (ret == SPI_INVALID_ADDRESS) { |
| /* Find the lowest even address allowed for reads. */ |
| readaddr = (spi_get_valid_read_addr() + 1) & ~1; |
| cmd[1] = (readaddr >> 16) & 0xff, |
| cmd[2] = (readaddr >> 8) & 0xff, |
| cmd[3] = (readaddr >> 0) & 0xff, |
| ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); |
| } |
| if (ret) |
| return ret; |
| msg_cspew("REMS returned %02x %02x. ", readarr[0], readarr[1]); |
| return 0; |
| } |
| |
| static int spi_res(unsigned char *readarr, int bytes) |
| { |
| unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 }; |
| uint32_t readaddr; |
| int ret; |
| int i; |
| |
| ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); |
| if (ret == SPI_INVALID_ADDRESS) { |
| /* Find the lowest even address allowed for reads. */ |
| readaddr = (spi_get_valid_read_addr() + 1) & ~1; |
| cmd[1] = (readaddr >> 16) & 0xff, |
| cmd[2] = (readaddr >> 8) & 0xff, |
| cmd[3] = (readaddr >> 0) & 0xff, |
| ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); |
| } |
| if (ret) |
| return ret; |
| msg_cspew("RES returned"); |
| for (i = 0; i < bytes; i++) |
| msg_cspew(" 0x%02x", readarr[i]); |
| msg_cspew(". "); |
| return 0; |
| } |
| |
| int spi_write_enable(void) |
| { |
| const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN }; |
| int result; |
| |
| /* Send WREN (Write Enable) */ |
| result = spi_send_command(sizeof(cmd), 0, cmd, NULL); |
| |
| if (result) |
| msg_cerr("%s failed\n", __func__); |
| |
| return result; |
| } |
| |
| int spi_write_disable(void) |
| { |
| const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI }; |
| |
| /* Send WRDI (Write Disable) */ |
| return spi_send_command(sizeof(cmd), 0, cmd, NULL); |
| } |
| |
| static int probe_spi_rdid_generic(struct flashchip *flash, int bytes) |
| { |
| unsigned char readarr[4]; |
| uint32_t id1; |
| uint32_t id2; |
| |
| if (spi_rdid(readarr, bytes)) |
| return 0; |
| |
| if (!oddparity(readarr[0])) |
| msg_cdbg("RDID byte 0 parity violation. "); |
| |
| /* Check if this is a continuation vendor ID. |
| * FIXME: Handle continuation device IDs. |
| */ |
| if (readarr[0] == 0x7f) { |
| if (!oddparity(readarr[1])) |
| msg_cdbg("RDID byte 1 parity violation. "); |
| id1 = (readarr[0] << 8) | readarr[1]; |
| id2 = readarr[2]; |
| if (bytes > 3) { |
| id2 <<= 8; |
| id2 |= readarr[3]; |
| } |
| } else { |
| id1 = readarr[0]; |
| id2 = (readarr[1] << 8) | readarr[2]; |
| } |
| |
| msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); |
| |
| if (id1 == flash->manufacture_id && id2 == flash->model_id) { |
| /* Print the status register to tell the |
| * user about possible write protection. |
| */ |
| spi_prettyprint_status_register(flash); |
| |
| return 1; |
| } |
| |
| /* Test if this is a pure vendor match. */ |
| if (id1 == flash->manufacture_id && |
| GENERIC_DEVICE_ID == flash->model_id) |
| return 1; |
| |
| /* Test if there is any vendor ID. */ |
| if (GENERIC_MANUF_ID == flash->manufacture_id && |
| id1 != 0xff) |
| return 1; |
| |
| return 0; |
| } |
| |
| int probe_spi_rdid(struct flashchip *flash) |
| { |
| return probe_spi_rdid_generic(flash, 3); |
| } |
| |
| int probe_spi_rdid4(struct flashchip *flash) |
| { |
| /* Some SPI controllers do not support commands with writecnt=1 and |
| * readcnt=4. |
| */ |
| switch (spi_controller) { |
| #if CONFIG_INTERNAL == 1 |
| #if defined(__i386__) || defined(__x86_64__) |
| case SPI_CONTROLLER_IT87XX: |
| case SPI_CONTROLLER_WBSIO: |
| msg_cinfo("4 byte RDID not supported on this SPI controller\n"); |
| return 0; |
| break; |
| #endif |
| #endif |
| default: |
| return probe_spi_rdid_generic(flash, 4); |
| } |
| |
| return 0; |
| } |
| |
| int probe_spi_rems(struct flashchip *flash) |
| { |
| unsigned char readarr[JEDEC_REMS_INSIZE]; |
| uint32_t id1, id2; |
| |
| if (spi_rems(readarr)) |
| return 0; |
| |
| id1 = readarr[0]; |
| id2 = readarr[1]; |
| |
| msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); |
| |
| if (id1 == flash->manufacture_id && id2 == flash->model_id) { |
| /* Print the status register to tell the |
| * user about possible write protection. |
| */ |
| spi_prettyprint_status_register(flash); |
| |
| return 1; |
| } |
| |
| /* Test if this is a pure vendor match. */ |
| if (id1 == flash->manufacture_id && |
| GENERIC_DEVICE_ID == flash->model_id) |
| return 1; |
| |
| /* Test if there is any vendor ID. */ |
| if (GENERIC_MANUF_ID == flash->manufacture_id && |
| id1 != 0xff) |
| return 1; |
| |
| return 0; |
| } |
| |
| int probe_spi_res1(struct flashchip *flash) |
| { |
| unsigned char readarr[3]; |
| uint32_t id2; |
| const unsigned char allff[] = {0xff, 0xff, 0xff}; |
| const unsigned char all00[] = {0x00, 0x00, 0x00}; |
| |
| /* We only want one-byte RES if RDID and REMS are unusable. */ |
| |
| /* Check if RDID is usable and does not return 0xff 0xff 0xff or |
| * 0x00 0x00 0x00. In that case, RES is pointless. |
| */ |
| if (!spi_rdid(readarr, 3) && memcmp(readarr, allff, 3) && |
| memcmp(readarr, all00, 3)) { |
| msg_cdbg("Ignoring RES in favour of RDID.\n"); |
| return 0; |
| } |
| /* Check if REMS is usable and does not return 0xff 0xff or |
| * 0x00 0x00. In that case, RES is pointless. |
| */ |
| if (!spi_rems(readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) && |
| memcmp(readarr, all00, JEDEC_REMS_INSIZE)) { |
| msg_cdbg("Ignoring RES in favour of REMS.\n"); |
| return 0; |
| } |
| |
| if (spi_res(readarr, 1)) |
| return 0; |
| |
| id2 = readarr[0]; |
| |
| msg_cdbg("%s: id 0x%x\n", __func__, id2); |
| |
| if (id2 != flash->model_id) |
| return 0; |
| |
| /* Print the status register to tell the |
| * user about possible write protection. |
| */ |
| spi_prettyprint_status_register(flash); |
| return 1; |
| } |
| |
| int probe_spi_res2(struct flashchip *flash) |
| { |
| unsigned char readarr[2]; |
| uint32_t id1, id2; |
| |
| if (spi_res(readarr, 2)) |
| return 0; |
| |
| id1 = readarr[0]; |
| id2 = readarr[1]; |
| |
| msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); |
| |
| if (id1 != flash->manufacture_id || id2 != flash->model_id) |
| return 0; |
| |
| /* Print the status register to tell the |
| * user about possible write protection. |
| */ |
| spi_prettyprint_status_register(flash); |
| return 1; |
| } |
| |
| uint8_t spi_read_status_register(void) |
| { |
| const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR }; |
| /* FIXME: No workarounds for driver/hardware bugs in generic code. */ |
| unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */ |
| int ret; |
| |
| /* Read Status Register */ |
| ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr); |
| if (ret) |
| msg_cerr("RDSR failed!\n"); |
| |
| return readarr[0]; |
| } |
| |
| /* Prettyprint the status register. Common definitions. */ |
| static void spi_prettyprint_status_register_welwip(uint8_t status) |
| { |
| msg_cdbg("Chip status register: Write Enable Latch (WEL) is " |
| "%sset\n", (status & (1 << 1)) ? "" : "not "); |
| msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is " |
| "%sset\n", (status & (1 << 0)) ? "" : "not "); |
| } |
| |
| /* Prettyprint the status register. Common definitions. */ |
| static void spi_prettyprint_status_register_common(uint8_t status) |
| { |
| msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is " |
| "%sset\n", (status & (1 << 5)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) is " |
| "%sset\n", (status & (1 << 4)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is " |
| "%sset\n", (status & (1 << 3)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is " |
| "%sset\n", (status & (1 << 2)) ? "" : "not "); |
| spi_prettyprint_status_register_welwip(status); |
| } |
| |
| /* Prettyprint the status register. Works for |
| * AMIC A25L series |
| */ |
| void spi_prettyprint_status_register_amic_a25l(uint8_t status) |
| { |
| msg_cdbg("Chip status register: Status Register Write Disable " |
| "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not "); |
| spi_prettyprint_status_register_common(status); |
| } |
| |
| /* Prettyprint the status register. Common definitions. */ |
| static void spi_prettyprint_status_register_at25_srplepewpp(uint8_t status) |
| { |
| msg_cdbg("Chip status register: Sector Protection Register Lock (SRPL) " |
| "is %sset\n", (status & (1 << 7)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 6 " |
| "is %sset\n", (status & (1 << 6)) ? "" : "not "); |
| msg_cdbg("Chip status register: Erase/Program Error (EPE) " |
| "is %sset\n", (status & (1 << 5)) ? "" : "not "); |
| msg_cdbg("Chip status register: WP# pin (WPP) " |
| "is %sactive\n", (status & (1 << 4)) ? "not " : ""); |
| } |
| |
| int spi_prettyprint_status_register_at25df(struct flashchip *flash) |
| { |
| uint8_t status; |
| |
| status = spi_read_status_register(); |
| msg_cdbg("Chip status register is %02x\n", status); |
| |
| spi_prettyprint_status_register_at25_srplepewpp(status); |
| msg_cdbg("Chip status register: Software Protection Status (SWP): "); |
| switch (status & (3 << 2)) { |
| case 0x0 << 2: |
| msg_cdbg("no sectors are protected\n"); |
| break; |
| case 0x1 << 2: |
| msg_cdbg("some sectors are protected\n"); |
| /* FIXME: Read individual Sector Protection Registers. */ |
| break; |
| case 0x3 << 2: |
| msg_cdbg("all sectors are protected\n"); |
| break; |
| default: |
| msg_cdbg("reserved for future use\n"); |
| break; |
| } |
| spi_prettyprint_status_register_welwip(status); |
| return 0; |
| } |
| |
| int spi_prettyprint_status_register_at25df_sec(struct flashchip *flash) |
| { |
| /* FIXME: We should check the security lockdown. */ |
| msg_cdbg("Ignoring security lockdown (if present)\n"); |
| msg_cdbg("Ignoring status register byte 2\n"); |
| return spi_prettyprint_status_register_at25df(flash); |
| } |
| |
| int spi_prettyprint_status_register_at25f(struct flashchip *flash) |
| { |
| uint8_t status; |
| |
| status = spi_read_status_register(); |
| msg_cdbg("Chip status register is %02x\n", status); |
| |
| spi_prettyprint_status_register_at25_srplepewpp(status); |
| msg_cdbg("Chip status register: Bit 3 " |
| "is %sset\n", (status & (1 << 3)) ? "" : "not "); |
| msg_cdbg("Chip status register: Block Protect 0 (BP0) is " |
| "%sset, %s sectors are protected\n", |
| (status & (1 << 2)) ? "" : "not ", |
| (status & (1 << 2)) ? "all" : "no"); |
| spi_prettyprint_status_register_welwip(status); |
| return 0; |
| } |
| |
| int spi_prettyprint_status_register_at25fs010(struct flashchip *flash) |
| { |
| uint8_t status; |
| |
| status = spi_read_status_register(); |
| msg_cdbg("Chip status register is %02x\n", status); |
| |
| msg_cdbg("Chip status register: Status Register Write Protect (WPEN) " |
| "is %sset\n", (status & (1 << 7)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is " |
| "%sset\n", (status & (1 << 6)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is " |
| "%sset\n", (status & (1 << 5)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 4 is " |
| "%sset\n", (status & (1 << 4)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is " |
| "%sset\n", (status & (1 << 3)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is " |
| "%sset\n", (status & (1 << 2)) ? "" : "not "); |
| /* FIXME: Pretty-print detailed sector protection status. */ |
| spi_prettyprint_status_register_welwip(status); |
| return 0; |
| } |
| |
| int spi_prettyprint_status_register_at25fs040(struct flashchip *flash) |
| { |
| uint8_t status; |
| |
| status = spi_read_status_register(); |
| msg_cdbg("Chip status register is %02x\n", status); |
| |
| msg_cdbg("Chip status register: Status Register Write Protect (WPEN) " |
| "is %sset\n", (status & (1 << 7)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is " |
| "%sset\n", (status & (1 << 6)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is " |
| "%sset\n", (status & (1 << 5)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) is " |
| "%sset\n", (status & (1 << 4)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is " |
| "%sset\n", (status & (1 << 3)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is " |
| "%sset\n", (status & (1 << 2)) ? "" : "not "); |
| /* FIXME: Pretty-print detailed sector protection status. */ |
| spi_prettyprint_status_register_welwip(status); |
| return 0; |
| } |
| |
| /* Prettyprint the status register. Works for |
| * ST M25P series |
| * MX MX25L series |
| */ |
| void spi_prettyprint_status_register_st_m25p(uint8_t status) |
| { |
| msg_cdbg("Chip status register: Status Register Write Disable " |
| "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not "); |
| msg_cdbg("Chip status register: Bit 6 is " |
| "%sset\n", (status & (1 << 6)) ? "" : "not "); |
| spi_prettyprint_status_register_common(status); |
| } |
| |
| void spi_prettyprint_status_register_sst25(uint8_t status) |
| { |
| msg_cdbg("Chip status register: Block Protect Write Disable " |
| "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not "); |
| msg_cdbg("Chip status register: Auto Address Increment Programming " |
| "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not "); |
| spi_prettyprint_status_register_common(status); |
| } |
| |
| /* Prettyprint the status register. Works for |
| * SST 25VF016 |
| */ |
| void spi_prettyprint_status_register_sst25vf016(uint8_t status) |
| { |
| const char *bpt[] = { |
| "none", |
| "1F0000H-1FFFFFH", |
| "1E0000H-1FFFFFH", |
| "1C0000H-1FFFFFH", |
| "180000H-1FFFFFH", |
| "100000H-1FFFFFH", |
| "all", "all" |
| }; |
| spi_prettyprint_status_register_sst25(status); |
| msg_cdbg("Resulting block protection : %s\n", |
| bpt[(status & 0x1c) >> 2]); |
| } |
| |
| void spi_prettyprint_status_register_sst25vf040b(uint8_t status) |
| { |
| const char *bpt[] = { |
| "none", |
| "0x70000-0x7ffff", |
| "0x60000-0x7ffff", |
| "0x40000-0x7ffff", |
| "all blocks", "all blocks", "all blocks", "all blocks" |
| }; |
| spi_prettyprint_status_register_sst25(status); |
| msg_cdbg("Resulting block protection : %s\n", |
| bpt[(status & 0x1c) >> 2]); |
| } |
| |
| void spi_prettyprint_status_register(struct flashchip *flash) |
| { |
| uint8_t status; |
| |
| status = spi_read_status_register(); |
| msg_cdbg("Chip status register is %02x\n", status); |
| switch (flash->manufacture_id) { |
| case AMIC_ID: |
| if ((flash->model_id & 0xff00) == 0x2000) |
| spi_prettyprint_status_register_amic_a25l(status); |
| break; |
| case ST_ID: |
| if (((flash->model_id & 0xff00) == 0x2000) || |
| ((flash->model_id & 0xff00) == 0x2500)) |
| spi_prettyprint_status_register_st_m25p(status); |
| break; |
| case MACRONIX_ID: |
| if ((flash->model_id & 0xff00) == 0x2000) |
| spi_prettyprint_status_register_st_m25p(status); |
| break; |
| case SST_ID: |
| switch (flash->model_id) { |
| case 0x2541: |
| spi_prettyprint_status_register_sst25vf016(status); |
| break; |
| case 0x8d: |
| case 0x258d: |
| spi_prettyprint_status_register_sst25vf040b(status); |
| break; |
| default: |
| spi_prettyprint_status_register_sst25(status); |
| break; |
| } |
| break; |
| } |
| } |
| |
| int spi_chip_erase_60(struct flashchip *flash) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_CE_60_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_CE_60 }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution\n", |
| __func__); |
| return result; |
| } |
| /* Wait until the Write-In-Progress bit is cleared. |
| * This usually takes 1-85 s, so wait in 1 s steps. |
| */ |
| /* FIXME: We assume spi_read_status_register will never fail. */ |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(1000 * 1000); |
| if (check_erased_range(flash, 0, flash->total_size * 1024)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int spi_chip_erase_c7(struct flashchip *flash) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_CE_C7_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_CE_C7 }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution\n", __func__); |
| return result; |
| } |
| /* Wait until the Write-In-Progress bit is cleared. |
| * This usually takes 1-85 s, so wait in 1 s steps. |
| */ |
| /* FIXME: We assume spi_read_status_register will never fail. */ |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(1000 * 1000); |
| if (check_erased_range(flash, 0, flash->total_size * 1024)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_BE_52_OUTSIZE, |
| .writearr = (const unsigned char[]){ |
| JEDEC_BE_52, |
| (addr >> 16) & 0xff, |
| (addr >> 8) & 0xff, |
| (addr & 0xff) |
| }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution at address 0x%x\n", |
| __func__, addr); |
| return result; |
| } |
| /* Wait until the Write-In-Progress bit is cleared. |
| * This usually takes 100-4000 ms, so wait in 100 ms steps. |
| */ |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(100 * 1000); |
| if (check_erased_range(flash, addr, blocklen)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Block size is usually |
| * 64k for Macronix |
| * 32k for SST |
| * 4-32k non-uniform for EON |
| */ |
| int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_BE_D8_OUTSIZE, |
| .writearr = (const unsigned char[]){ |
| JEDEC_BE_D8, |
| (addr >> 16) & 0xff, |
| (addr >> 8) & 0xff, |
| (addr & 0xff) |
| }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution at address 0x%x\n", |
| __func__, addr); |
| return result; |
| } |
| /* Wait until the Write-In-Progress bit is cleared. |
| * This usually takes 100-4000 ms, so wait in 100 ms steps. |
| */ |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(100 * 1000); |
| if (check_erased_range(flash, addr, blocklen)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Block size is usually |
| * 4k for PMC |
| */ |
| int spi_block_erase_d7(struct flashchip *flash, unsigned int addr, unsigned int blocklen) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_BE_D7_OUTSIZE, |
| .writearr = (const unsigned char[]){ |
| JEDEC_BE_D7, |
| (addr >> 16) & 0xff, |
| (addr >> 8) & 0xff, |
| (addr & 0xff) |
| }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution at address 0x%x\n", |
| __func__, addr); |
| return result; |
| } |
| /* Wait until the Write-In-Progress bit is cleared. |
| * This usually takes 100-4000 ms, so wait in 100 ms steps. |
| */ |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(100 * 1000); |
| if (check_erased_range(flash, addr, blocklen)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Sector size is usually 4k, though Macronix eliteflash has 64k */ |
| int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_SE_OUTSIZE, |
| .writearr = (const unsigned char[]){ |
| JEDEC_SE, |
| (addr >> 16) & 0xff, |
| (addr >> 8) & 0xff, |
| (addr & 0xff) |
| }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution at address 0x%x\n", |
| __func__, addr); |
| return result; |
| } |
| /* Wait until the Write-In-Progress bit is cleared. |
| * This usually takes 15-800 ms, so wait in 10 ms steps. |
| */ |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(10 * 1000); |
| if (check_erased_range(flash, addr, blocklen)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen) |
| { |
| if ((addr != 0) || (blocklen != flash->total_size * 1024)) { |
| msg_cerr("%s called with incorrect arguments\n", |
| __func__); |
| return -1; |
| } |
| return spi_chip_erase_60(flash); |
| } |
| |
| int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen) |
| { |
| if ((addr != 0) || (blocklen != flash->total_size * 1024)) { |
| msg_cerr("%s called with incorrect arguments\n", |
| __func__); |
| return -1; |
| } |
| return spi_chip_erase_c7(flash); |
| } |
| |
| int spi_write_status_enable(void) |
| { |
| const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR }; |
| int result; |
| |
| /* Send EWSR (Enable Write Status Register). */ |
| result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL); |
| |
| if (result) |
| msg_cerr("%s failed\n", __func__); |
| |
| return result; |
| } |
| |
| /* |
| * This is according the SST25VF016 datasheet, who knows it is more |
| * generic that this... |
| */ |
| static int spi_write_status_register_ewsr(struct flashchip *flash, int status) |
| { |
| int result; |
| int i = 0; |
| struct spi_command cmds[] = { |
| { |
| /* WRSR requires either EWSR or WREN depending on chip type. */ |
| .writecnt = JEDEC_EWSR_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_EWSR }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_WRSR_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution\n", |
| __func__); |
| /* No point in waiting for the command to complete if execution |
| * failed. |
| */ |
| return result; |
| } |
| /* WRSR performs a self-timed erase before the changes take effect. |
| * This may take 50-85 ms in most cases, and some chips apparently |
| * allow running RDSR only once. Therefore pick an initial delay of |
| * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed. |
| */ |
| programmer_delay(100 * 1000); |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) { |
| if (++i > 490) { |
| msg_cerr("Error: WIP bit after WRSR never cleared\n"); |
| return TIMEOUT_ERROR; |
| } |
| programmer_delay(10 * 1000); |
| } |
| return 0; |
| } |
| |
| static int spi_write_status_register_wren(struct flashchip *flash, int status) |
| { |
| int result; |
| int i = 0; |
| struct spi_command cmds[] = { |
| { |
| /* WRSR requires either EWSR or WREN depending on chip type. */ |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_WRSR_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution\n", |
| __func__); |
| /* No point in waiting for the command to complete if execution |
| * failed. |
| */ |
| return result; |
| } |
| /* WRSR performs a self-timed erase before the changes take effect. |
| * This may take 50-85 ms in most cases, and some chips apparently |
| * allow running RDSR only once. Therefore pick an initial delay of |
| * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed. |
| */ |
| programmer_delay(100 * 1000); |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) { |
| if (++i > 490) { |
| msg_cerr("Error: WIP bit after WRSR never cleared\n"); |
| return TIMEOUT_ERROR; |
| } |
| programmer_delay(10 * 1000); |
| } |
| return 0; |
| } |
| |
| static int spi_write_status_register(struct flashchip *flash, int status) |
| { |
| int ret = 1; |
| |
| if (!(flash->feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) { |
| msg_cdbg("Missing status register write definition, assuming " |
| "EWSR is needed\n"); |
| flash->feature_bits |= FEATURE_WRSR_EWSR; |
| } |
| if (flash->feature_bits & FEATURE_WRSR_WREN) |
| ret = spi_write_status_register_wren(flash, status); |
| if (ret && (flash->feature_bits & FEATURE_WRSR_EWSR)) |
| ret = spi_write_status_register_ewsr(flash, status); |
| return ret; |
| } |
| |
| int spi_byte_program(int addr, uint8_t databyte) |
| { |
| int result; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE, |
| .writearr = (const unsigned char[]){ |
| JEDEC_BYTE_PROGRAM, |
| (addr >> 16) & 0xff, |
| (addr >> 8) & 0xff, |
| (addr & 0xff), |
| databyte |
| }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution at address 0x%x\n", |
| __func__, addr); |
| } |
| return result; |
| } |
| |
| int spi_nbyte_program(int addr, uint8_t *bytes, int len) |
| { |
| int result; |
| /* FIXME: Switch to malloc based on len unless that kills speed. */ |
| unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = { |
| JEDEC_BYTE_PROGRAM, |
| (addr >> 16) & 0xff, |
| (addr >> 8) & 0xff, |
| (addr >> 0) & 0xff, |
| }; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len, |
| .writearr = cmd, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| if (!len) { |
| msg_cerr("%s called for zero-length write\n", __func__); |
| return 1; |
| } |
| if (len > 256) { |
| msg_cerr("%s called for too long a write\n", __func__); |
| return 1; |
| } |
| |
| memcpy(&cmd[4], bytes, len); |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during command execution at address 0x%x\n", |
| __func__, addr); |
| } |
| return result; |
| } |
| |
| /* A generic brute-force block protection disable works like this: |
| * Write 0x00 to the status register. Check if any locks are still set (that |
| * part is chip specific). Repeat once. |
| */ |
| int spi_disable_blockprotect(struct flashchip *flash) |
| { |
| uint8_t status; |
| int result; |
| |
| status = spi_read_status_register(); |
| /* If block protection is disabled, stop here. */ |
| if ((status & 0x3c) == 0) |
| return 0; |
| |
| msg_cdbg("Some block protection in effect, disabling\n"); |
| result = spi_write_status_register(flash, status & ~0x3c); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| status = spi_read_status_register(); |
| if ((status & 0x3c) != 0) { |
| msg_cerr("Block protection could not be disabled!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int spi_disable_blockprotect_at25df(struct flashchip *flash) |
| { |
| uint8_t status; |
| int result; |
| |
| status = spi_read_status_register(); |
| /* If block protection is disabled, stop here. */ |
| if ((status & (3 << 2)) == 0) |
| return 0; |
| |
| msg_cdbg("Some block protection in effect, disabling\n"); |
| if (status & (1 << 7)) { |
| msg_cdbg("Need to disable Sector Protection Register Lock\n"); |
| if ((status & (1 << 4)) == 0) { |
| msg_cerr("WP# pin is active, disabling " |
| "write protection is impossible.\n"); |
| return 1; |
| } |
| /* All bits except bit 7 (SPRL) are readonly. */ |
| result = spi_write_status_register(flash, status & ~(1 << 7)); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| |
| } |
| /* Global unprotect. Make sure to mask SPRL as well. */ |
| result = spi_write_status_register(flash, status & ~0xbc); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| status = spi_read_status_register(); |
| if ((status & (3 << 2)) != 0) { |
| msg_cerr("Block protection could not be disabled!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int spi_disable_blockprotect_at25df_sec(struct flashchip *flash) |
| { |
| /* FIXME: We should check the security lockdown. */ |
| msg_cinfo("Ignoring security lockdown (if present)\n"); |
| return spi_disable_blockprotect_at25df(flash); |
| } |
| |
| int spi_disable_blockprotect_at25f(struct flashchip *flash) |
| { |
| /* spi_disable_blockprotect_at25df is not really the right way to do |
| * this, but the side effects of said function work here as well. |
| */ |
| return spi_disable_blockprotect_at25df(flash); |
| } |
| |
| int spi_disable_blockprotect_at25fs010(struct flashchip *flash) |
| { |
| uint8_t status; |
| int result; |
| |
| status = spi_read_status_register(); |
| /* If block protection is disabled, stop here. */ |
| if ((status & 0x6c) == 0) |
| return 0; |
| |
| msg_cdbg("Some block protection in effect, disabling\n"); |
| if (status & (1 << 7)) { |
| msg_cdbg("Need to disable Status Register Write Protect\n"); |
| /* Clear bit 7 (WPEN). */ |
| result = spi_write_status_register(flash, status & ~(1 << 7)); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| } |
| /* Global unprotect. Make sure to mask WPEN as well. */ |
| result = spi_write_status_register(flash, status & ~0xec); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| status = spi_read_status_register(); |
| if ((status & 0x6c) != 0) { |
| msg_cerr("Block protection could not be disabled!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| int spi_disable_blockprotect_at25fs040(struct flashchip *flash) |
| { |
| uint8_t status; |
| int result; |
| |
| status = spi_read_status_register(); |
| /* If block protection is disabled, stop here. */ |
| if ((status & 0x7c) == 0) |
| return 0; |
| |
| msg_cdbg("Some block protection in effect, disabling\n"); |
| if (status & (1 << 7)) { |
| msg_cdbg("Need to disable Status Register Write Protect\n"); |
| /* Clear bit 7 (WPEN). */ |
| result = spi_write_status_register(flash, status & ~(1 << 7)); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| } |
| /* Global unprotect. Make sure to mask WPEN as well. */ |
| result = spi_write_status_register(flash, status & ~0xfc); |
| if (result) { |
| msg_cerr("spi_write_status_register failed\n"); |
| return result; |
| } |
| status = spi_read_status_register(); |
| if ((status & 0x7c) != 0) { |
| msg_cerr("Block protection could not be disabled!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int spi_nbyte_read(int address, uint8_t *bytes, int len) |
| { |
| const unsigned char cmd[JEDEC_READ_OUTSIZE] = { |
| JEDEC_READ, |
| (address >> 16) & 0xff, |
| (address >> 8) & 0xff, |
| (address >> 0) & 0xff, |
| }; |
| |
| /* Send Read */ |
| return spi_send_command(sizeof(cmd), len, cmd, bytes); |
| } |
| |
| /* |
| * Read a part of the flash chip. |
| * FIXME: Use the chunk code from Michael Karcher instead. |
| * Each page is read separately in chunks with a maximum size of chunksize. |
| */ |
| int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize) |
| { |
| int rc = 0; |
| int i, j, starthere, lenhere; |
| int page_size = flash->page_size; |
| int toread; |
| |
| /* Warning: This loop has a very unusual condition and body. |
| * The loop needs to go through each page with at least one affected |
| * byte. The lowest page number is (start / page_size) since that |
| * division rounds down. The highest page number we want is the page |
| * where the last byte of the range lives. That last byte has the |
| * address (start + len - 1), thus the highest page number is |
| * (start + len - 1) / page_size. Since we want to include that last |
| * page as well, the loop condition uses <=. |
| */ |
| for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { |
| /* Byte position of the first byte in the range in this page. */ |
| /* starthere is an offset to the base address of the chip. */ |
| starthere = max(start, i * page_size); |
| /* Length of bytes in the range in this page. */ |
| lenhere = min(start + len, (i + 1) * page_size) - starthere; |
| for (j = 0; j < lenhere; j += chunksize) { |
| toread = min(chunksize, lenhere - j); |
| rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread); |
| if (rc) |
| break; |
| } |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Write a part of the flash chip. |
| * FIXME: Use the chunk code from Michael Karcher instead. |
| * Each page is written separately in chunks with a maximum size of chunksize. |
| */ |
| int spi_write_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize) |
| { |
| int rc = 0; |
| int i, j, starthere, lenhere; |
| /* FIXME: page_size is the wrong variable. We need max_writechunk_size |
| * in struct flashchip to do this properly. All chips using |
| * spi_chip_write_256 have page_size set to max_writechunk_size, so |
| * we're OK for now. |
| */ |
| int page_size = flash->page_size; |
| int towrite; |
| |
| /* Warning: This loop has a very unusual condition and body. |
| * The loop needs to go through each page with at least one affected |
| * byte. The lowest page number is (start / page_size) since that |
| * division rounds down. The highest page number we want is the page |
| * where the last byte of the range lives. That last byte has the |
| * address (start + len - 1), thus the highest page number is |
| * (start + len - 1) / page_size. Since we want to include that last |
| * page as well, the loop condition uses <=. |
| */ |
| for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { |
| /* Byte position of the first byte in the range in this page. */ |
| /* starthere is an offset to the base address of the chip. */ |
| starthere = max(start, i * page_size); |
| /* Length of bytes in the range in this page. */ |
| lenhere = min(start + len, (i + 1) * page_size) - starthere; |
| for (j = 0; j < lenhere; j += chunksize) { |
| towrite = min(chunksize, lenhere - j); |
| rc = spi_nbyte_program(starthere + j, buf + starthere - start + j, towrite); |
| if (rc) |
| break; |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(10); |
| } |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Program chip using byte programming. (SLOW!) |
| * This is for chips which can only handle one byte writes |
| * and for chips where memory mapped programming is impossible |
| * (e.g. due to size constraints in IT87* for over 512 kB) |
| */ |
| /* real chunksize is 1, logical chunksize is 1 */ |
| int spi_chip_write_1(struct flashchip *flash, uint8_t *buf, int start, int len) |
| { |
| int i, result = 0; |
| |
| for (i = start; i < start + len; i++) { |
| result = spi_byte_program(i, buf[i - start]); |
| if (result) |
| return 1; |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(10); |
| } |
| |
| return 0; |
| } |
| |
| int spi_aai_write(struct flashchip *flash, uint8_t *buf, int start, int len) |
| { |
| uint32_t pos = start; |
| int result; |
| unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = { |
| JEDEC_AAI_WORD_PROGRAM, |
| }; |
| struct spi_command cmds[] = { |
| { |
| .writecnt = JEDEC_WREN_OUTSIZE, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = JEDEC_AAI_WORD_PROGRAM_OUTSIZE, |
| .writearr = (const unsigned char[]){ |
| JEDEC_AAI_WORD_PROGRAM, |
| (start >> 16) & 0xff, |
| (start >> 8) & 0xff, |
| (start & 0xff), |
| buf[0], |
| buf[1] |
| }, |
| .readcnt = 0, |
| .readarr = NULL, |
| }, { |
| .writecnt = 0, |
| .writearr = NULL, |
| .readcnt = 0, |
| .readarr = NULL, |
| }}; |
| |
| switch (spi_controller) { |
| #if CONFIG_INTERNAL == 1 |
| #if defined(__i386__) || defined(__x86_64__) |
| case SPI_CONTROLLER_IT87XX: |
| case SPI_CONTROLLER_WBSIO: |
| msg_perr("%s: impossible with this SPI controller," |
| " degrading to byte program\n", __func__); |
| return spi_chip_write_1(flash, buf, start, len); |
| #endif |
| #endif |
| default: |
| break; |
| } |
| |
| /* The even start address and even length requirements can be either |
| * honored outside this function, or we can call spi_byte_program |
| * for the first and/or last byte and use AAI for the rest. |
| * FIXME: Move this to generic code. |
| */ |
| /* The data sheet requires a start address with the low bit cleared. */ |
| if (start % 2) { |
| msg_cerr("%s: start address not even! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| if (spi_chip_write_1(flash, buf, start, start % 2)) |
| return SPI_GENERIC_ERROR; |
| pos += start % 2; |
| cmds[1].writearr = (const unsigned char[]){ |
| JEDEC_AAI_WORD_PROGRAM, |
| (pos >> 16) & 0xff, |
| (pos >> 8) & 0xff, |
| (pos & 0xff), |
| buf[pos - start], |
| buf[pos - start + 1] |
| }; |
| /* Do not return an error for now. */ |
| //return SPI_GENERIC_ERROR; |
| } |
| /* The data sheet requires total AAI write length to be even. */ |
| if (len % 2) { |
| msg_cerr("%s: total write length not even! Please report a " |
| "bug at flashrom@flashrom.org\n", __func__); |
| /* Do not return an error for now. */ |
| //return SPI_GENERIC_ERROR; |
| } |
| |
| |
| result = spi_send_multicommand(cmds); |
| if (result) { |
| msg_cerr("%s failed during start command execution\n", |
| __func__); |
| /* FIXME: Should we send WRDI here as well to make sure the chip |
| * is not in AAI mode? |
| */ |
| return result; |
| } |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(10); |
| |
| /* We already wrote 2 bytes in the multicommand step. */ |
| pos += 2; |
| |
| /* Are there at least two more bytes to write? */ |
| while (pos < start + len - 1) { |
| cmd[1] = buf[pos++ - start]; |
| cmd[2] = buf[pos++ - start]; |
| spi_send_command(JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL); |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| programmer_delay(10); |
| } |
| |
| /* Use WRDI to exit AAI mode. This needs to be done before issuing any |
| * other non-AAI command. |
| */ |
| spi_write_disable(); |
| |
| /* Write remaining byte (if any). */ |
| if (pos < start + len) { |
| if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2)) |
| return SPI_GENERIC_ERROR; |
| pos += pos % 2; |
| } |
| |
| return 0; |
| } |