blob: e68fdf971b97be390d1db33644c3c94e7a88fce8 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include <usb.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
#define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z)
#define DEFAULT_TIMEOUT 3000
static usb_dev_handle *dediprog_handle;
static int dediprog_firmwareversion;
static int dediprog_endpoint;
#define DEDI_SPI_CMD_PAGEWRITE 0x1
#define DEDI_SPI_CMD_AAIWRITE 0x4
#if 0
/* Might be useful for other pieces of code as well. */
static void print_hex(void *buf, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
msg_pdbg(" %02x", ((uint8_t *)buf)[i]);
}
#endif
/* Might be useful for other USB devices as well. static for now. */
/* device parameter allows user to specify one device of multiple installed */
static struct usb_device *get_device_by_vid_pid(uint16_t vid, uint16_t pid, unsigned int device)
{
struct usb_bus *bus;
struct usb_device *dev;
for (bus = usb_get_busses(); bus; bus = bus->next)
for (dev = bus->devices; dev; dev = dev->next)
if ((dev->descriptor.idVendor == vid) &&
(dev->descriptor.idProduct == pid)) {
if (device == 0)
return dev;
device--;
}
return NULL;
}
//int usb_control_msg(usb_dev_handle *dev, int requesttype, int request, int value, int index, char *bytes, int size, int timeout);
/* Set/clear LEDs on dediprog */
#define PASS_ON (0 << 0)
#define PASS_OFF (1 << 0)
#define BUSY_ON (0 << 1)
#define BUSY_OFF (1 << 1)
#define ERROR_ON (0 << 2)
#define ERROR_OFF (1 << 2)
static int current_led_status = -1;
static int dediprog_set_leds(int leds)
{
int ret, target_leds;
if (leds < 0 || leds > 7)
leds = 0; // Bogus value, enable all LEDs
if (leds == current_led_status)
return 0;
/* Older Dediprogs with 2.x.x and 3.x.x firmware only had
* two LEDs, and they were reversed. So map them around if
* we have an old device. On those devices the LEDs map as
* follows:
* bit 2 == 0: green light is on.
* bit 0 == 0: red light is on.
*/
if (dediprog_firmwareversion < FIRMWARE_VERSION(5,0,0)) {
target_leds = ((leds & ERROR_OFF) >> 2) |
((leds & PASS_OFF) << 2);
} else {
target_leds = leds;
}
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, target_leds,
NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command Set LED 0x%x failed (%s)!\n",
leds, usb_strerror());
return 1;
}
current_led_status = leds;
return 0;
}
static int dediprog_set_spi_voltage(int millivolt)
{
int ret;
uint16_t voltage_selector;
switch (millivolt) {
case 0:
/* Admittedly this one is an assumption. */
voltage_selector = 0x0;
break;
case 1800:
voltage_selector = 0x12;
break;
case 2500:
voltage_selector = 0x11;
break;
case 3500:
voltage_selector = 0x10;
break;
default:
msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt);
return 1;
}
msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000,
millivolt % 1000);
if (voltage_selector == 0) {
/* Wait some time as the original driver does. */
programmer_delay(200 * 1000);
}
ret = usb_control_msg(dediprog_handle, 0x42, 0x9, voltage_selector,
0xff, NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command Set SPI Voltage 0x%x failed!\n",
voltage_selector);
return 1;
}
if (voltage_selector != 0) {
/* Wait some time as the original driver does. */
programmer_delay(200 * 1000);
}
return 0;
}
#if 0
/* After dediprog_set_spi_speed, the original app always calls
* dediprog_set_spi_voltage(0) and then
* dediprog_check_devicestring() four times in a row.
* After that, dediprog_command_a() is called.
* This looks suspiciously like the microprocessor in the SF100 has to be
* restarted/reinitialized in case the speed changes.
*/
static int dediprog_set_spi_speed(uint16_t speed)
{
int ret;
unsigned int khz;
/* Case 1 and 2 are in weird order. Probably an organically "grown"
* interface.
* Base frequency is 24000 kHz, divisors are (in order)
* 1, 3, 2, 8, 11, 16, 32, 64.
*/
switch (speed) {
case 0x0:
khz = 24000;
break;
case 0x1:
khz = 8000;
break;
case 0x2:
khz = 12000;
break;
case 0x3:
khz = 3000;
break;
case 0x4:
khz = 2180;
break;
case 0x5:
khz = 1500;
break;
case 0x6:
khz = 750;
break;
case 0x7:
khz = 375;
break;
default:
msg_perr("Unknown frequency selector 0x%x! Aborting.\n", speed);
return 1;
}
msg_pdbg("Setting SPI speed to %u kHz\n", khz);
ret = usb_control_msg(dediprog_handle, 0x42, 0x61, speed, 0xff, NULL,
0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command Set SPI Speed 0x%x failed!\n", speed);
return 1;
}
return 0;
}
#endif
/* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes.
* @start start address
* @len length
* @return 0 on success, 1 on failure
*/
static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len)
{
int ret;
unsigned int i;
/* chunksize must be 512, other sizes will NOT work at all. */
const unsigned int chunksize = 0x200;
const unsigned int count = len / chunksize;
const char count_and_chunk[] = {count & 0xff,
(count >> 8) & 0xff,
chunksize & 0xff,
(chunksize >> 8) & 0xff};
if ((start % chunksize) || (len % chunksize)) {
msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
"at flashrom@flashrom.org\n", __func__, start, len);
return 1;
}
/* No idea if the hardware can handle empty reads, so chicken out. */
if (!len)
return 0;
/* Command Read SPI Bulk. No idea which read command is used on the
* SPI side.
*/
ret = usb_control_msg(dediprog_handle, 0x42, 0x20, start % 0x10000,
start / 0x10000, (char *)count_and_chunk,
sizeof(count_and_chunk), DEFAULT_TIMEOUT);
if (ret != sizeof(count_and_chunk)) {
msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret,
usb_strerror());
return 1;
}
for (i = 0; i < count; i++) {
ret = usb_bulk_read(dediprog_handle, 0x80 | dediprog_endpoint,
(char *)buf + i * chunksize, chunksize,
DEFAULT_TIMEOUT);
if (ret != chunksize) {
msg_perr("SPI bulk read %i failed, expected %i, got %i "
"%s!\n", i, chunksize, ret, usb_strerror());
return 1;
}
}
return 0;
}
static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len)
{
int ret;
/* chunksize must be 512, other sizes will NOT work at all. */
const unsigned int chunksize = 0x200;
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
unsigned int bulklen;
dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF);
if (residue) {
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
start, residue);
ret = spi_read_chunked(flash, buf, start, residue, 16);
if (ret) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return ret;
}
}
/* Round down. */
bulklen = (len - residue) / chunksize * chunksize;
ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue,
bulklen);
if (ret) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return ret;
}
len -= residue + bulklen;
if (len) {
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
start, len);
ret = spi_read_chunked(flash, buf + residue + bulklen,
start + residue + bulklen, len, 16);
if (ret) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return ret;
}
}
dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF);
return 0;
}
/* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes.
* @chunksize length of data chunks, only 256 supported by now
* @start start address
* @len length
* @dedi_spi_cmd dediprog specific write command for spi bus
* @return 0 on success, 1 on failure
*/
static int dediprog_spi_bulk_write(struct flashctx *flash, uint8_t *buf, unsigned int chunksize,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
int ret;
unsigned int i;
/* USB transfer size must be 512, other sizes will NOT work at all.
* chunksize is the real data size per USB bulk transfer. The remaining
* space in a USB bulk transfer must be filled with 0xff padding.
*/
const unsigned int count = len / chunksize;
const char count_and_cmd[] = {count & 0xff, (count >> 8) & 0xff, 0x00, dedi_spi_cmd};
char usbbuf[512];
/*
* We should change this check to
* chunksize > 512
* once we know how to handle different chunk sizes.
*/
if (chunksize != 256) {
msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n"
"Please report a bug at flashrom@flashrom.org\n", __func__, chunksize);
return 1;
}
if ((start % chunksize) || (len % chunksize)) {
msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
"at flashrom@flashrom.org\n", __func__, start, len);
return 1;
}
/* No idea if the hardware can handle empty writes, so chicken out. */
if (!len)
return 0;
/* Command Write SPI Bulk. No idea which write command is used on the
* SPI side.
*/
ret = usb_control_msg(dediprog_handle, 0x42, 0x30, start % 0x10000, start / 0x10000,
(char *)count_and_cmd, sizeof(count_and_cmd), DEFAULT_TIMEOUT);
if (ret != sizeof(count_and_cmd)) {
msg_perr("Command Write SPI Bulk failed, %i %s!\n", ret,
usb_strerror());
return 1;
}
for (i = 0; i < count; i++) {
memset(usbbuf, 0xff, sizeof(usbbuf));
memcpy(usbbuf, buf + i * chunksize, chunksize);
ret = usb_bulk_write(dediprog_handle, dediprog_endpoint,
usbbuf, 512,
DEFAULT_TIMEOUT);
if (ret != 512) {
msg_perr("SPI bulk write failed, expected %i, got %i "
"%s!\n", 512, ret, usb_strerror());
return 1;
}
}
return 0;
}
static int dediprog_spi_write(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
int ret;
const unsigned int chunksize = flash->chip->page_size;
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
unsigned int bulklen;
dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF);
if (chunksize != 256) {
msg_pdbg("Page sizes other than 256 bytes are unsupported as "
"we don't know how dediprog\nhandles them.\n");
/* Write everything like it was residue. */
residue = len;
}
if (residue) {
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
start, residue);
/* No idea about the real limit. Maybe 12, maybe more. */
ret = spi_write_chunked(flash, buf, start, residue, 12);
if (ret) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return ret;
}
}
/* Round down. */
bulklen = (len - residue) / chunksize * chunksize;
ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd);
if (ret) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return ret;
}
len -= residue + bulklen;
if (len) {
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
start, len);
ret = spi_write_chunked(flash, buf + residue + bulklen,
start + residue + bulklen, len, 12);
if (ret) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return ret;
}
}
dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF);
return 0;
}
static int dediprog_spi_write_256(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
return dediprog_spi_write(flash, buf, start, len, DEDI_SPI_CMD_PAGEWRITE);
}
static int dediprog_spi_write_aai(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
return dediprog_spi_write(flash, buf, start, len, DEDI_SPI_CMD_AAIWRITE);
}
static int dediprog_spi_send_command(struct flashctx *flash,
unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
int ret;
msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt);
/* Paranoid, but I don't want to be blamed if anything explodes. */
if (writecnt > 16) {
msg_perr("Untested writecnt=%i, aborting.\n", writecnt);
return 1;
}
/* 16 byte reads should work. */
if (readcnt > 16) {
msg_perr("Untested readcnt=%i, aborting.\n", readcnt);
return 1;
}
ret = usb_control_msg(dediprog_handle, 0x42, 0x1, 0xff,
readcnt ? 0x1 : 0x0, (char *)writearr, writecnt,
DEFAULT_TIMEOUT);
if (ret != writecnt) {
msg_perr("Send SPI failed, expected %i, got %i %s!\n",
writecnt, ret, usb_strerror());
return 1;
}
if (!readcnt)
return 0;
memset(readarr, 0, readcnt);
ret = usb_control_msg(dediprog_handle, 0xc2, 0x01, 0xbb8, 0x0000,
(char *)readarr, readcnt, DEFAULT_TIMEOUT);
if (ret != readcnt) {
msg_perr("Receive SPI failed, expected %i, got %i %s!\n",
readcnt, ret, usb_strerror());
return 1;
}
return 0;
}
static int dediprog_check_devicestring(void)
{
int ret;
int fw[3];
char buf[0x11];
/* Command Prepare Receive Device String. */
memset(buf, 0, sizeof(buf));
ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef03, buf,
0x1, DEFAULT_TIMEOUT);
/* The char casting is needed to stop gcc complaining about an always true comparison. */
if ((ret != 0x1) || (buf[0] != (char)0xff)) {
msg_perr("Unexpected response to Command Prepare Receive Device"
" String!\n");
return 1;
}
/* Command Receive Device String. */
memset(buf, 0, sizeof(buf));
ret = usb_control_msg(dediprog_handle, 0xc2, 0x8, 0xff, 0xff, buf,
0x10, DEFAULT_TIMEOUT);
if (ret != 0x10) {
msg_perr("Incomplete/failed Command Receive Device String!\n");
return 1;
}
buf[0x10] = '\0';
msg_pdbg("Found a %s\n", buf);
if (memcmp(buf, "SF100", 0x5)) {
msg_perr("Device not a SF100!\n");
return 1;
}
if (sscanf(buf, "SF100 V:%d.%d.%d ", &fw[0], &fw[1], &fw[2]) != 3) {
msg_perr("Unexpected firmware version string!\n");
return 1;
}
/* Only these versions were tested. */
if (fw[0] < 2 || fw[0] > 5) {
msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0],
fw[1], fw[2]);
return 1;
}
dediprog_firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]);
return 0;
}
/* Command A seems to be some sort of device init. It is either followed by
* dediprog_check_devicestring (often) or Command A (often) or
* Command F (once).
*/
static int dediprog_command_a(void)
{
int ret;
char buf[0x1];
memset(buf, 0, sizeof(buf));
ret = usb_control_msg(dediprog_handle, 0xc3, 0xb, 0x0, 0x0, buf,
0x1, DEFAULT_TIMEOUT);
if (ret < 0) {
msg_perr("Command A failed (%s)!\n", usb_strerror());
return 1;
}
if ((ret != 0x1) || (buf[0] != 0x6f)) {
msg_perr("Unexpected response to Command A!\n");
return 1;
}
return 0;
}
#if 0
/* Something.
* Present in eng_detect_blink.log with firmware 3.1.8
* Always preceded by Command Receive Device String
*/
static int dediprog_command_b(void)
{
int ret;
char buf[0x3];
memset(buf, 0, sizeof(buf));
ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef00, buf,
0x3, DEFAULT_TIMEOUT);
if (ret < 0) {
msg_perr("Command B failed (%s)!\n", usb_strerror());
return 1;
}
if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) ||
(buf[2] != 0xff)) {
msg_perr("Unexpected response to Command B!\n");
return 1;
}
return 0;
}
#endif
/* Command C is only sent after dediprog_check_devicestring, but not after every
* invocation of dediprog_check_devicestring. It is only sent after the first
* dediprog_command_a(); dediprog_check_devicestring() sequence in each session.
* I'm tempted to call this one start_SPI_engine or finish_init.
*/
static int dediprog_command_c(void)
{
int ret;
ret = usb_control_msg(dediprog_handle, 0x42, 0x4, 0x0, 0x0, NULL,
0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command C failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
#if 0
/* Very strange. Seems to be a programmer keepalive or somesuch.
* Wait unsuccessfully for timeout ms to read one byte.
* Is usually called after setting voltage to 0.
* Present in all logs with Firmware 2.1.1 and 3.1.8
*/
static int dediprog_command_f(int timeout)
{
int ret;
char buf[0x1];
memset(buf, 0, sizeof(buf));
ret = usb_control_msg(dediprog_handle, 0xc2, 0x11, 0xff, 0xff, buf,
0x1, timeout);
/* This check is most probably wrong. Command F always causes a timeout
* in the logs, so we should check for timeout instead of checking for
* success.
*/
if (ret != 0x1) {
msg_perr("Command F failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
/* Start/stop blinking?
* Present in eng_detect_blink.log with firmware 3.1.8
* Preceded by Command J
*/
static int dediprog_command_g(void)
{
int ret;
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x03, NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command G failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
/* Something.
* Present in all logs with firmware 5.1.5
* Always preceded by Command Receive Device String
* Always followed by Command Set SPI Voltage nonzero
*/
static int dediprog_command_h(void)
{
int ret;
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x05, NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command H failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
/* Shutdown for firmware 5.x?
* Present in all logs with firmware 5.1.5
* Often preceded by a SPI operation (Command Read SPI Bulk or Receive SPI)
* Always followed by Command Set SPI Voltage 0x0000
*/
static int dediprog_command_i(void)
{
int ret;
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x06, NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command I failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
/* Start/stop blinking?
* Present in all logs with firmware 5.1.5
* Always preceded by Command Receive Device String on 5.1.5
* Always followed by Command Set SPI Voltage nonzero on 5.1.5
* Present in eng_detect_blink.log with firmware 3.1.8
* Preceded by Command B in eng_detect_blink.log
* Followed by Command G in eng_detect_blink.log
*/
static int dediprog_command_j(void)
{
int ret;
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x07, NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command J failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
#endif
static int parse_voltage(char *voltage)
{
char *tmp = NULL;
int i;
int millivolt = 0, fraction = 0;
if (!voltage || !strlen(voltage)) {
msg_perr("Empty voltage= specified.\n");
return -1;
}
millivolt = (int)strtol(voltage, &tmp, 0);
voltage = tmp;
/* Handle "," and "." as decimal point. Everything after it is assumed
* to be in decimal notation.
*/
if ((*voltage == '.') || (*voltage == ',')) {
voltage++;
for (i = 0; i < 3; i++) {
fraction *= 10;
/* Don't advance if the current character is invalid,
* but continue multiplying.
*/
if ((*voltage < '0') || (*voltage > '9'))
continue;
fraction += *voltage - '0';
voltage++;
}
/* Throw away remaining digits. */
voltage += strspn(voltage, "0123456789");
}
/* The remaining string must be empty or "mV" or "V". */
tolower_string(voltage);
/* No unit or "V". */
if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) {
millivolt *= 1000;
millivolt += fraction;
} else if (!strncmp(voltage, "mv", 2) ||
!strncmp(voltage, "milliv", 6)) {
/* No adjustment. fraction is discarded. */
} else {
/* Garbage at the end of the string. */
msg_perr("Garbage voltage= specified.\n");
return -1;
}
return millivolt;
}
static const struct spi_programmer spi_programmer_dediprog = {
.type = SPI_CONTROLLER_DEDIPROG,
.max_data_read = MAX_DATA_UNSPECIFIED,
.max_data_write = MAX_DATA_UNSPECIFIED,
.command = dediprog_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = dediprog_spi_read,
.write_256 = dediprog_spi_write_256,
.write_aai = dediprog_spi_write_aai,
};
static int dediprog_shutdown(void *data)
{
msg_pspew("%s\n", __func__);
#if 0
/* Shutdown on firmware 5.x */
if (dediprog_firmwareversion == 5)
if (dediprog_command_i())
return 1;
#endif
/* URB 28. Command Set SPI Voltage to 0. */
if (dediprog_set_spi_voltage(0x0))
return 1;
if (usb_release_interface(dediprog_handle, 0)) {
msg_perr("Could not release USB interface!\n");
return 1;
}
if (usb_close(dediprog_handle)) {
msg_perr("Could not close USB device!\n");
return 1;
}
return 0;
}
/* URB numbers refer to the first log ever captured. */
int dediprog_init(void)
{
struct usb_device *dev;
char *voltage, *device;
int millivolt = 3500;
long usedevice = 0;
int ret;
msg_pspew("%s\n", __func__);
voltage = extract_programmer_param("voltage");
if (voltage) {
millivolt = parse_voltage(voltage);
free(voltage);
if (millivolt < 0)
return 1;
msg_pinfo("Setting voltage to %i mV\n", millivolt);
}
device = extract_programmer_param("device");
if (device) {
char *dev_suffix;
errno = 0;
usedevice = strtol(device, &dev_suffix, 10);
if (errno != 0 || device == dev_suffix) {
msg_perr("Error: Could not convert 'device'.\n");
free(device);
return 1;
}
if (usedevice < 0 || usedevice > UINT_MAX) {
msg_perr("Error: Value for 'device' is out of range.\n");
free(device);
return 1;
}
if (strlen(dev_suffix) > 0) {
msg_perr("Error: Garbage following 'device' value.\n");
free(device);
return 1;
}
msg_pinfo("Using device %li.\n", usedevice);
}
free(device);
/* Here comes the USB stuff. */
usb_init();
usb_find_busses();
usb_find_devices();
dev = get_device_by_vid_pid(0x0483, 0xdada, (unsigned int) usedevice);
if (!dev) {
msg_perr("Could not find a Dediprog SF100 on USB!\n");
return 1;
}
msg_pdbg("Found USB device (%04x:%04x).\n",
dev->descriptor.idVendor, dev->descriptor.idProduct);
dediprog_handle = usb_open(dev);
ret = usb_set_configuration(dediprog_handle, 1);
if (ret < 0) {
msg_perr("Could not set USB device configuration: %i %s\n",
ret, usb_strerror());
if (usb_close(dediprog_handle))
msg_perr("Could not close USB device!\n");
return 1;
}
ret = usb_claim_interface(dediprog_handle, 0);
if (ret < 0) {
msg_perr("Could not claim USB device interface %i: %i %s\n",
0, ret, usb_strerror());
if (usb_close(dediprog_handle))
msg_perr("Could not close USB device!\n");
return 1;
}
dediprog_endpoint = 2;
if (register_shutdown(dediprog_shutdown, NULL))
return 1;
dediprog_set_leds(PASS_ON|BUSY_ON|ERROR_ON);
/* URB 6. Command A. */
if (dediprog_command_a()) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return 1;
}
/* URB 7. Command A. */
if (dediprog_command_a()) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return 1;
}
/* URB 8. Command Prepare Receive Device String. */
/* URB 9. Command Receive Device String. */
if (dediprog_check_devicestring()) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return 1;
}
/* URB 10. Command C. */
if (dediprog_command_c()) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return 1;
}
/* URB 11. Command Set SPI Voltage. */
if (dediprog_set_spi_voltage(millivolt)) {
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
return 1;
}
register_spi_programmer(&spi_programmer_dediprog);
/* RE leftover, leave in until the driver is complete. */
#if 0
/* Execute RDID by hand if you want to test it. */
dediprog_do_stuff();
#endif
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_OFF);
return 0;
}
#if 0
/* Leftovers from reverse engineering. Keep for documentation purposes until
* completely understood.
*/
static int dediprog_do_stuff(void)
{
char buf[0x4];
/* SPI command processing starts here. */
/* URB 12. Command Send SPI. */
/* URB 13. Command Receive SPI. */
memset(buf, 0, sizeof(buf));
/* JEDEC RDID */
msg_pdbg("Sending RDID\n");
buf[0] = JEDEC_RDID;
if (dediprog_spi_send_command(JEDEC_RDID_OUTSIZE, JEDEC_RDID_INSIZE,
(unsigned char *)buf, (unsigned char *)buf))
return 1;
msg_pdbg("Receiving response: ");
print_hex(buf, JEDEC_RDID_INSIZE);
/* URB 14-27 are more SPI commands. */
/* URB 28. Command Set SPI Voltage. */
if (dediprog_set_spi_voltage(0x0))
return 1;
/* URB 29-38. Command F, unsuccessful wait. */
if (dediprog_command_f(544))
return 1;
/* URB 39. Command Set SPI Voltage. */
if (dediprog_set_spi_voltage(0x10))
return 1;
/* URB 40. Command Set SPI Speed. */
if (dediprog_set_spi_speed(0x2))
return 1;
/* URB 41 is just URB 28. */
/* URB 42,44,46,48,51,53 is just URB 8. */
/* URB 43,45,47,49,52,54 is just URB 9. */
/* URB 50 is just URB 6/7. */
/* URB 55-131 is just URB 29-38. (wait unsuccessfully for 4695 (maybe 4751) ms)*/
/* URB 132,134 is just URB 6/7. */
/* URB 133 is just URB 29-38. */
/* URB 135 is just URB 8. */
/* URB 136 is just URB 9. */
/* URB 137 is just URB 11. */
/* Command Start Bulk Read. Data is u16 blockcount, u16 blocksize. */
/* Command Start Bulk Write. Data is u16 blockcount, u16 blocksize. */
/* Bulk transfer sizes for Command Start Bulk Read/Write are always
* 512 bytes, rest is filled with 0xff.
*/
return 0;
}
#endif