blob: e1f63a81d0c51a884d0a36786b1bdf5ee551de3e [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2002 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2005-2007 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef COREBOOT_TABLES_H
#define COREBOOT_TABLES_H
#include <stdint.h>
/* The coreboot table information is for conveying information
* from the firmware to the loaded OS image. Primarily this
* is expected to be information that cannot be discovered by
* other means, such as querying the hardware directly.
*
* All of the information should be Position Independent Data.
* That is it should be safe to relocated any of the information
* without it's meaning/correctness changing. For table that
* can reasonably be used on multiple architectures the data
* size should be fixed. This should ease the transition between
* 32 bit and 64 bit architectures etc.
*
* The completeness test for the information in this table is:
* - Can all of the hardware be detected?
* - Are the per motherboard constants available?
* - Is there enough to allow a kernel to run that was written before
* a particular motherboard is constructed? (Assuming the kernel
* has drivers for all of the hardware but it does not have
* assumptions on how the hardware is connected together).
*
* With this test it should be straight forward to determine if a
* table entry is required or not. This should remove much of the
* long term compatibility burden as table entries which are
* irrelevant or have been replaced by better alternatives may be
* dropped. Of course it is polite and expedite to include extra
* table entries and be backwards compatible, but it is not required.
*/
/* Since coreboot is usually compiled 32bit, gcc will align 64bit
* types to 32bit boundaries. If the coreboot table is dumped on a
* 64bit system, a uint64_t would be aligned to 64bit boundaries,
* breaking the table format.
*
* lb_uint64 will keep 64bit coreboot table values aligned to 32bit
* to ensure compatibility. They can be accessed with the two functions
* below: unpack_lb64() and pack_lb64()
*
* See also: util/lbtdump/lbtdump.c
*/
struct lb_uint64 {
uint32_t lo;
uint32_t hi;
};
struct lb_header {
uint8_t signature[4]; /* LBIO */
uint32_t header_bytes;
uint32_t header_checksum;
uint32_t table_bytes;
uint32_t table_checksum;
uint32_t table_entries;
};
/* Every entry in the boot environment list will correspond to a boot
* info record. Encoding both type and size. The type is obviously
* so you can tell what it is. The size allows you to skip that
* boot environment record if you don't know what it easy. This allows
* forward compatibility with records not yet defined.
*/
struct lb_record {
uint32_t tag; /* tag ID */
uint32_t size; /* size of record (in bytes) */
};
#define LB_TAG_UNUSED 0x0000
#define LB_TAG_MEMORY 0x0001
struct lb_memory_range {
struct lb_uint64 start;
struct lb_uint64 size;
uint32_t type;
#define LB_MEM_RAM 1 /* Memory anyone can use */
#define LB_MEM_RESERVED 2 /* Don't use this memory region */
#define LB_MEM_TABLE 16 /* Ram configuration tables are kept in */
};
struct lb_memory {
uint32_t tag;
uint32_t size;
struct lb_memory_range map[0];
};
#define LB_TAG_HWRPB 0x0002
struct lb_hwrpb {
uint32_t tag;
uint32_t size;
uint64_t hwrpb;
};
#define LB_TAG_MAINBOARD 0x0003
struct lb_mainboard {
uint32_t tag;
uint32_t size;
uint8_t vendor_idx;
uint8_t part_number_idx;
uint8_t strings[0];
};
#define LB_TAG_VERSION 0x0004
#define LB_TAG_EXTRA_VERSION 0x0005
#define LB_TAG_BUILD 0x0006
#define LB_TAG_COMPILE_TIME 0x0007
#define LB_TAG_COMPILE_BY 0x0008
#define LB_TAG_COMPILE_HOST 0x0009
#define LB_TAG_COMPILE_DOMAIN 0x000a
#define LB_TAG_COMPILER 0x000b
#define LB_TAG_LINKER 0x000c
#define LB_TAG_ASSEMBLER 0x000d
struct lb_string {
uint32_t tag;
uint32_t size;
uint8_t string[0];
};
#define LB_TAG_FORWARD 0x0011
struct lb_forward {
uint32_t tag;
uint32_t size;
uint64_t forward;
};
#endif /* COREBOOT_TABLES_H */