| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2010 Carl-Daniel Hailfinger |
| * Copyright (C) 2015 Simon Glass |
| * Copyright (C) 2015 Stefan Tauner |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include "platform.h" |
| |
| #include <sys/types.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <errno.h> |
| #include <libusb.h> |
| #include "flash.h" |
| #include "chipdrivers.h" |
| #include "programmer.h" |
| #include "spi.h" |
| |
| /* LIBUSB_CALL ensures the right calling conventions on libusb callbacks. |
| * However, the macro is not defined everywhere. m( |
| */ |
| #ifndef LIBUSB_CALL |
| #define LIBUSB_CALL |
| #endif |
| |
| #define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z) |
| #define DEFAULT_TIMEOUT 3000 |
| #define DEDIPROG_ASYNC_TRANSFERS 8 /* at most 8 asynchronous transfers */ |
| #define REQTYPE_OTHER_OUT (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_OTHER) /* 0x43 */ |
| #define REQTYPE_OTHER_IN (LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_OTHER) /* 0xC3 */ |
| #define REQTYPE_EP_OUT (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT) /* 0x42 */ |
| #define REQTYPE_EP_IN (LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT) /* 0xC2 */ |
| |
| enum dediprog_devtype { |
| DEV_UNKNOWN = 0, |
| DEV_SF100 = 100, |
| DEV_SF200 = 200, |
| DEV_SF600 = 600, |
| }; |
| |
| enum dediprog_leds { |
| LED_INVALID = -1, |
| LED_NONE = 0, |
| LED_PASS = 1 << 0, |
| LED_BUSY = 1 << 1, |
| LED_ERROR = 1 << 2, |
| LED_ALL = 7, |
| }; |
| |
| /* IO bits for CMD_SET_IO_LED message */ |
| enum dediprog_ios { |
| IO1 = 1 << 0, |
| IO2 = 1 << 1, |
| IO3 = 1 << 2, |
| IO4 = 1 << 3, |
| }; |
| |
| enum dediprog_cmds { |
| CMD_TRANSCEIVE = 0x01, |
| CMD_POLL_STATUS_REG = 0x02, |
| CMD_SET_VPP = 0x03, |
| CMD_SET_TARGET = 0x04, |
| CMD_READ_EEPROM = 0x05, |
| CMD_WRITE_EEPROM = 0x06, |
| CMD_SET_IO_LED = 0x07, |
| CMD_READ_PROG_INFO = 0x08, |
| CMD_SET_VCC = 0x09, |
| CMD_SET_STANDALONE = 0x0A, |
| CMD_SET_VOLTAGE = 0x0B, /* Only in firmware older than 6.0.0 */ |
| CMD_GET_BUTTON = 0x11, |
| CMD_GET_UID = 0x12, |
| CMD_SET_CS = 0x14, |
| CMD_IO_MODE = 0x15, |
| CMD_FW_UPDATE = 0x1A, |
| CMD_FPGA_UPDATE = 0x1B, |
| CMD_READ_FPGA_VERSION = 0x1C, |
| CMD_SET_HOLD = 0x1D, |
| CMD_READ = 0x20, |
| CMD_WRITE = 0x30, |
| CMD_WRITE_AT45DB = 0x31, |
| CMD_NAND_WRITE = 0x32, |
| CMD_NAND_READ = 0x33, |
| CMD_SET_SPI_CLK = 0x61, |
| CMD_CHECK_SOCKET = 0x62, |
| CMD_DOWNLOAD_PRJ = 0x63, |
| CMD_READ_PRJ_NAME = 0x64, |
| // New protocol/firmware only |
| CMD_CHECK_SDCARD = 0x65, |
| CMD_READ_PRJ = 0x66, |
| }; |
| |
| enum dediprog_target { |
| FLASH_TYPE_APPLICATION_FLASH_1 = 0, |
| FLASH_TYPE_FLASH_CARD, |
| FLASH_TYPE_APPLICATION_FLASH_2, |
| FLASH_TYPE_SOCKET, |
| }; |
| |
| enum dediprog_readmode { |
| READ_MODE_STD = 1, |
| READ_MODE_FAST = 2, |
| READ_MODE_ATMEL45 = 3, |
| READ_MODE_4B_ADDR_FAST = 4, |
| READ_MODE_4B_ADDR_FAST_0x0C = 5, /* New protocol only */ |
| }; |
| |
| enum dediprog_writemode { |
| WRITE_MODE_PAGE_PGM = 1, |
| WRITE_MODE_PAGE_WRITE = 2, |
| WRITE_MODE_1B_AAI = 3, |
| WRITE_MODE_2B_AAI = 4, |
| WRITE_MODE_128B_PAGE = 5, |
| WRITE_MODE_PAGE_AT26DF041 = 6, |
| WRITE_MODE_SILICON_BLUE_FPGA = 7, |
| WRITE_MODE_64B_PAGE_NUMONYX_PCM = 8, /* unit of 512 bytes */ |
| WRITE_MODE_4B_ADDR_256B_PAGE_PGM = 9, |
| WRITE_MODE_32B_PAGE_PGM_MXIC_512K = 10, /* unit of 512 bytes */ |
| WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12 = 11, |
| WRITE_MODE_4B_ADDR_256B_PAGE_PGM_FLAGS = 12, |
| }; |
| |
| enum dediprog_standalone_mode { |
| ENTER_STANDALONE_MODE = 0, |
| LEAVE_STANDALONE_MODE = 1, |
| }; |
| |
| /* |
| * These are not official designations; they are for use in flashrom only. |
| * Order must be preserved so that comparison operators work. |
| */ |
| enum protocol { |
| PROTOCOL_UNKNOWN, |
| PROTOCOL_V1, |
| PROTOCOL_V2, |
| PROTOCOL_V3, |
| }; |
| |
| static const struct dev_entry devs_dediprog[] = { |
| {0x0483, 0xDADA, OK, "Dediprog", "SF100/SF200/SF600"}, |
| |
| {0}, |
| }; |
| |
| struct dediprog_data { |
| struct libusb_context *usb_ctx; |
| libusb_device_handle *handle; |
| int in_endpoint; |
| int out_endpoint; |
| int firmwareversion; |
| enum dediprog_devtype devicetype; |
| }; |
| |
| #if defined(LIBUSB_MAJOR) && defined(LIBUSB_MINOR) && defined(LIBUSB_MICRO) && \ |
| LIBUSB_MAJOR <= 1 && LIBUSB_MINOR == 0 && LIBUSB_MICRO < 9 |
| /* Quick and dirty replacement for missing libusb_error_name in libusb < 1.0.9 */ |
| const char * LIBUSB_CALL libusb_error_name(int error_code) |
| { |
| if (error_code >= INT16_MIN && error_code <= INT16_MAX) { |
| /* 18 chars for text, rest for number (16 b should be enough), sign, nullbyte. */ |
| static char my_libusb_error[18 + 5 + 2]; |
| sprintf(my_libusb_error, "libusb error code %i", error_code); |
| return my_libusb_error; |
| } else { |
| return "UNKNOWN"; |
| } |
| } |
| #endif |
| |
| static enum protocol protocol(const struct dediprog_data *dp_data) |
| { |
| /* Firmware version < 5.0.0 is handled explicitly in some cases. */ |
| switch (dp_data->devicetype) { |
| case DEV_SF100: |
| case DEV_SF200: |
| if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 5, 0)) |
| return PROTOCOL_V1; |
| else |
| return PROTOCOL_V2; |
| case DEV_SF600: |
| if (dp_data->firmwareversion < FIRMWARE_VERSION(6, 9, 0)) |
| return PROTOCOL_V1; |
| else if (dp_data->firmwareversion <= FIRMWARE_VERSION(7, 2, 21)) |
| return PROTOCOL_V2; |
| else |
| return PROTOCOL_V3; |
| default: |
| return PROTOCOL_UNKNOWN; |
| } |
| } |
| |
| struct dediprog_transfer_status { |
| int error; /* OK if 0, ERROR else */ |
| unsigned int queued_idx; |
| unsigned int finished_idx; |
| }; |
| |
| static void LIBUSB_CALL dediprog_bulk_read_cb(struct libusb_transfer *const transfer) |
| { |
| struct dediprog_transfer_status *const status = (struct dediprog_transfer_status *)transfer->user_data; |
| if (transfer->status != LIBUSB_TRANSFER_COMPLETED) { |
| status->error = 1; |
| msg_perr("SPI bulk read failed!\n"); |
| } |
| ++status->finished_idx; |
| } |
| |
| static int dediprog_bulk_read_poll(struct libusb_context *usb_ctx, |
| const struct dediprog_transfer_status *const status, |
| const int finish) |
| { |
| if (status->finished_idx >= status->queued_idx) |
| return 0; |
| |
| do { |
| struct timeval timeout = { 10, 0 }; |
| const int ret = libusb_handle_events_timeout(usb_ctx, &timeout); |
| if (ret < 0) { |
| msg_perr("Polling read events failed: %i %s!\n", ret, libusb_error_name(ret)); |
| return 1; |
| } |
| } while (finish && (status->finished_idx < status->queued_idx)); |
| return 0; |
| } |
| |
| static int dediprog_read(libusb_device_handle *dediprog_handle, |
| enum dediprog_cmds cmd, unsigned int value, unsigned int idx, |
| uint8_t *bytes, size_t size) |
| { |
| return libusb_control_transfer(dediprog_handle, REQTYPE_EP_IN, cmd, value, idx, |
| (unsigned char *)bytes, size, DEFAULT_TIMEOUT); |
| } |
| |
| static int dediprog_write(libusb_device_handle *dediprog_handle, |
| enum dediprog_cmds cmd, unsigned int value, unsigned int idx, |
| const uint8_t *bytes, size_t size) |
| { |
| return libusb_control_transfer(dediprog_handle, REQTYPE_EP_OUT, cmd, value, idx, |
| (unsigned char *)bytes, size, DEFAULT_TIMEOUT); |
| } |
| |
| |
| /* This function sets the GPIOs connected to the LEDs as well as IO1-IO4. */ |
| static int dediprog_set_leds(int leds, const struct dediprog_data *dp_data) |
| { |
| if (leds < LED_NONE || leds > LED_ALL) |
| leds = LED_ALL; |
| |
| /* Older Dediprogs with 2.x.x and 3.x.x firmware only had two LEDs, assigned to different bits. So map |
| * them around if we have an old device. On those devices the LEDs map as follows: |
| * bit 2 == 0: green light is on. |
| * bit 0 == 0: red light is on. |
| * |
| * Additionally, the command structure has changed with the "new" protocol. |
| * |
| * FIXME: take IO pins into account |
| */ |
| int target_leds, ret; |
| if (protocol(dp_data) >= PROTOCOL_V2) { |
| target_leds = (leds ^ 7) << 8; |
| ret = dediprog_write(dp_data->handle, CMD_SET_IO_LED, target_leds, 0, NULL, 0); |
| } else { |
| if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 0, 0)) { |
| target_leds = ((leds & LED_ERROR) >> 2) | ((leds & LED_PASS) << 2); |
| } else { |
| target_leds = leds; |
| } |
| target_leds ^= 7; |
| |
| ret = dediprog_write(dp_data->handle, CMD_SET_IO_LED, 0x9, target_leds, NULL, 0); |
| } |
| |
| if (ret != 0x0) { |
| msg_perr("Command Set LED 0x%x failed (%s)!\n", leds, libusb_error_name(ret)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int dediprog_set_spi_voltage(libusb_device_handle *dediprog_handle, int millivolt) |
| { |
| int ret; |
| uint16_t voltage_selector; |
| |
| switch (millivolt) { |
| case 0: |
| /* Admittedly this one is an assumption. */ |
| voltage_selector = 0x0; |
| break; |
| case 1800: |
| voltage_selector = 0x12; |
| break; |
| case 2500: |
| voltage_selector = 0x11; |
| break; |
| case 3500: |
| voltage_selector = 0x10; |
| break; |
| default: |
| msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt); |
| return 1; |
| } |
| msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000, |
| millivolt % 1000); |
| |
| if (voltage_selector == 0) { |
| /* Wait some time as the original driver does. */ |
| programmer_delay(200 * 1000); |
| } |
| ret = dediprog_write(dediprog_handle, CMD_SET_VCC, voltage_selector, 0, NULL, 0); |
| if (ret != 0x0) { |
| msg_perr("Command Set SPI Voltage 0x%x failed!\n", |
| voltage_selector); |
| return 1; |
| } |
| if (voltage_selector != 0) { |
| /* Wait some time as the original driver does. */ |
| programmer_delay(200 * 1000); |
| } |
| return 0; |
| } |
| |
| struct dediprog_spispeeds { |
| const char *const name; |
| const int speed; |
| }; |
| |
| static const struct dediprog_spispeeds spispeeds[] = { |
| { "24M", 0x0 }, |
| { "12M", 0x2 }, |
| { "8M", 0x1 }, |
| { "3M", 0x3 }, |
| { "2.18M", 0x4 }, |
| { "1.5M", 0x5 }, |
| { "750k", 0x6 }, |
| { "375k", 0x7 }, |
| { NULL, 0x0 }, |
| }; |
| |
| static int dediprog_set_spi_speed(unsigned int spispeed_idx, const struct dediprog_data *dp_data) |
| { |
| if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 0, 0)) { |
| msg_pwarn("Skipping to set SPI speed because firmware is too old.\n"); |
| return 0; |
| } |
| |
| const struct dediprog_spispeeds *spispeed = &spispeeds[spispeed_idx]; |
| msg_pdbg("SPI speed is %sHz\n", spispeed->name); |
| |
| int ret = dediprog_write(dp_data->handle, CMD_SET_SPI_CLK, spispeed->speed, 0, NULL, 0); |
| if (ret != 0x0) { |
| msg_perr("Command Set SPI Speed 0x%x failed!\n", spispeed->speed); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int prepare_rw_cmd( |
| struct flashctx *const flash, uint8_t *data_packet, unsigned int count, |
| uint8_t dedi_spi_cmd, unsigned int *value, unsigned int *idx, unsigned int start, int is_read) |
| { |
| const struct dediprog_data *dp_data = flash->mst->spi.data; |
| |
| if (count >= 1 << 16) { |
| msg_perr("%s: Unsupported transfer length of %u blocks! " |
| "Please report a bug at flashrom@flashrom.org\n", |
| __func__, count); |
| return 1; |
| } |
| |
| /* First 5 bytes are common in both generations. */ |
| data_packet[0] = count & 0xff; |
| data_packet[1] = (count >> 8) & 0xff; |
| data_packet[2] = 0; /* RFU */ |
| data_packet[3] = dedi_spi_cmd; /* Read/Write Mode (currently READ_MODE_STD, WRITE_MODE_PAGE_PGM or WRITE_MODE_2B_AAI) */ |
| data_packet[4] = 0; /* "Opcode". Specs imply necessity only for READ_MODE_4B_ADDR_FAST and WRITE_MODE_4B_ADDR_256B_PAGE_PGM */ |
| |
| if (protocol(dp_data) >= PROTOCOL_V2) { |
| if (is_read && flash->chip->feature_bits & FEATURE_4BA_FAST_READ) { |
| data_packet[3] = READ_MODE_4B_ADDR_FAST_0x0C; |
| data_packet[4] = JEDEC_READ_4BA_FAST; |
| } else if (dedi_spi_cmd == WRITE_MODE_PAGE_PGM |
| && (flash->chip->feature_bits & FEATURE_4BA_WRITE)) { |
| data_packet[3] = WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12; |
| data_packet[4] = JEDEC_BYTE_PROGRAM_4BA; |
| } |
| |
| *value = *idx = 0; |
| data_packet[5] = 0; /* RFU */ |
| data_packet[6] = (start >> 0) & 0xff; |
| data_packet[7] = (start >> 8) & 0xff; |
| data_packet[8] = (start >> 16) & 0xff; |
| data_packet[9] = (start >> 24) & 0xff; |
| if (protocol(dp_data) >= PROTOCOL_V3) { |
| if (is_read) { |
| data_packet[10] = 0x00; /* address length (3 or 4) */ |
| data_packet[11] = 0x00; /* dummy cycle / 2 */ |
| } else { |
| /* 16 LSBs and 16 HSBs of page size */ |
| /* FIXME: This assumes page size of 256. */ |
| data_packet[10] = 0x00; |
| data_packet[11] = 0x01; |
| data_packet[12] = 0x00; |
| data_packet[13] = 0x00; |
| } |
| } |
| } else { |
| if (flash->chip->feature_bits & FEATURE_4BA_EAR_ANY) { |
| if (spi_set_extended_address(flash, start >> 24)) |
| return 1; |
| } else if (start >> 24) { |
| msg_cerr("Can't handle 4-byte address with dediprog.\n"); |
| return 1; |
| } |
| /* |
| * We don't know how the dediprog firmware handles 4-byte |
| * addresses. So let's not tell it what we are doing and |
| * only send the lower 3 bytes. |
| */ |
| *value = start & 0xffff; |
| *idx = (start >> 16) & 0xff; |
| } |
| |
| return 0; |
| } |
| |
| /* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes. |
| * @start start address |
| * @len length |
| * @return 0 on success, 1 on failure |
| */ |
| static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| int err = 1; |
| const struct dediprog_data *dp_data = flash->mst->spi.data; |
| |
| /* chunksize must be 512, other sizes will NOT work at all. */ |
| const unsigned int chunksize = 512; |
| const unsigned int count = len / chunksize; |
| |
| struct dediprog_transfer_status status = { 0, 0, 0 }; |
| struct libusb_transfer *transfers[DEDIPROG_ASYNC_TRANSFERS] = { NULL, }; |
| struct libusb_transfer *transfer; |
| |
| if (len == 0) |
| return 0; |
| |
| if ((start % chunksize) || (len % chunksize)) { |
| msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug at flashrom@flashrom.org\n", |
| __func__, start, len); |
| return 1; |
| } |
| |
| int command_packet_size; |
| switch (protocol(dp_data)) { |
| case PROTOCOL_V1: |
| command_packet_size = 5; |
| break; |
| case PROTOCOL_V2: |
| command_packet_size = 10; |
| break; |
| case PROTOCOL_V3: |
| command_packet_size = 12; |
| break; |
| default: |
| return 1; |
| } |
| |
| uint8_t data_packet[command_packet_size]; |
| unsigned int value, idx; |
| if (prepare_rw_cmd(flash, data_packet, count, READ_MODE_STD, &value, &idx, start, 1)) |
| return 1; |
| |
| int ret = dediprog_write(dp_data->handle, CMD_READ, value, idx, data_packet, sizeof(data_packet)); |
| if (ret != (int)sizeof(data_packet)) { |
| msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret, libusb_error_name(ret)); |
| return 1; |
| } |
| |
| /* |
| * Ring buffer of bulk transfers. |
| * Poll until at least one transfer is ready, |
| * schedule next transfers until buffer is full. |
| */ |
| |
| /* Allocate bulk transfers. */ |
| unsigned int i; |
| for (i = 0; i < MIN(DEDIPROG_ASYNC_TRANSFERS, count); ++i) { |
| transfers[i] = libusb_alloc_transfer(0); |
| if (!transfers[i]) { |
| msg_perr("Allocating libusb transfer %i failed: %s!\n", i, libusb_error_name(ret)); |
| goto err_free; |
| } |
| } |
| |
| /* Now transfer requested chunks using libusb's asynchronous interface. */ |
| while (!status.error && (status.queued_idx < count)) { |
| while ((status.queued_idx < count) && |
| (status.queued_idx - status.finished_idx) < DEDIPROG_ASYNC_TRANSFERS) |
| { |
| transfer = transfers[status.queued_idx % DEDIPROG_ASYNC_TRANSFERS]; |
| libusb_fill_bulk_transfer(transfer, dp_data->handle, 0x80 | dp_data->in_endpoint, |
| (unsigned char *)buf + status.queued_idx * chunksize, chunksize, |
| dediprog_bulk_read_cb, &status, DEFAULT_TIMEOUT); |
| transfer->flags |= LIBUSB_TRANSFER_SHORT_NOT_OK; |
| ret = libusb_submit_transfer(transfer); |
| if (ret < 0) { |
| msg_perr("Submitting SPI bulk read %i failed: %s!\n", |
| status.queued_idx, libusb_error_name(ret)); |
| goto err_free; |
| } |
| ++status.queued_idx; |
| } |
| if (dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 0)) |
| goto err_free; |
| } |
| /* Wait for transfers to finish. */ |
| if (dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 0)) |
| goto err_free; |
| /* Check if everything has been transmitted. */ |
| if ((status.finished_idx < count) || status.error) |
| goto err_free; |
| |
| err = 0; |
| |
| err_free: |
| dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 1); |
| for (i = 0; i < DEDIPROG_ASYNC_TRANSFERS; ++i) |
| if (transfers[i]) libusb_free_transfer(transfers[i]); |
| return err; |
| } |
| |
| static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| int ret; |
| /* chunksize must be 512, other sizes will NOT work at all. */ |
| const unsigned int chunksize = 0x200; |
| unsigned int residue = start % chunksize ? min(len, chunksize - start % chunksize) : 0; |
| unsigned int bulklen; |
| const struct dediprog_data *dp_data = flash->mst->spi.data; |
| |
| dediprog_set_leds(LED_BUSY, dp_data); |
| |
| if (residue) { |
| msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", |
| start, residue); |
| ret = default_spi_read(flash, buf, start, residue); |
| if (ret) |
| goto err; |
| } |
| |
| /* Round down. */ |
| bulklen = (len - residue) / chunksize * chunksize; |
| ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue, bulklen); |
| if (ret) |
| goto err; |
| |
| len -= residue + bulklen; |
| if (len != 0) { |
| msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", |
| start, len); |
| ret = default_spi_read(flash, buf + residue + bulklen, |
| start + residue + bulklen, len); |
| if (ret) |
| goto err; |
| } |
| |
| dediprog_set_leds(LED_PASS, dp_data); |
| return 0; |
| err: |
| dediprog_set_leds(LED_ERROR, dp_data); |
| return ret; |
| } |
| |
| /* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes. |
| * @chunksize length of data chunks, only 256 supported by now |
| * @start start address |
| * @len length |
| * @dedi_spi_cmd dediprog specific write command for spi bus |
| * @return 0 on success, 1 on failure |
| */ |
| static int dediprog_spi_bulk_write(struct flashctx *flash, const uint8_t *buf, unsigned int chunksize, |
| unsigned int start, unsigned int len, uint8_t dedi_spi_cmd) |
| { |
| /* USB transfer size must be 512, other sizes will NOT work at all. |
| * chunksize is the real data size per USB bulk transfer. The remaining |
| * space in a USB bulk transfer must be filled with 0xff padding. |
| */ |
| const unsigned int count = len / chunksize; |
| const struct dediprog_data *dp_data = flash->mst->spi.data; |
| |
| /* |
| * We should change this check to |
| * chunksize > 512 |
| * once we know how to handle different chunk sizes. |
| */ |
| if (chunksize != 256) { |
| msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n" |
| "Please report a bug at flashrom@flashrom.org\n", __func__, chunksize); |
| return 1; |
| } |
| |
| if ((start % chunksize) || (len % chunksize)) { |
| msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug " |
| "at flashrom@flashrom.org\n", __func__, start, len); |
| return 1; |
| } |
| |
| /* No idea if the hardware can handle empty writes, so chicken out. */ |
| if (len == 0) |
| return 0; |
| |
| int command_packet_size; |
| switch (protocol(dp_data)) { |
| case PROTOCOL_V1: |
| command_packet_size = 5; |
| break; |
| case PROTOCOL_V2: |
| command_packet_size = 10; |
| break; |
| case PROTOCOL_V3: |
| command_packet_size = 14; |
| break; |
| default: |
| return 1; |
| } |
| |
| uint8_t data_packet[command_packet_size]; |
| unsigned int value, idx; |
| if (prepare_rw_cmd(flash, data_packet, count, dedi_spi_cmd, &value, &idx, start, 0)) |
| return 1; |
| int ret = dediprog_write(dp_data->handle, CMD_WRITE, value, idx, data_packet, sizeof(data_packet)); |
| if (ret != (int)sizeof(data_packet)) { |
| msg_perr("Command Write SPI Bulk failed, %s!\n", libusb_error_name(ret)); |
| return 1; |
| } |
| |
| unsigned int i; |
| for (i = 0; i < count; i++) { |
| unsigned char usbbuf[512]; |
| memcpy(usbbuf, buf + i * chunksize, chunksize); |
| memset(usbbuf + chunksize, 0xff, sizeof(usbbuf) - chunksize); // fill up with 0xFF |
| int transferred; |
| ret = libusb_bulk_transfer(dp_data->handle, dp_data->out_endpoint, usbbuf, 512, &transferred, |
| DEFAULT_TIMEOUT); |
| if ((ret < 0) || (transferred != 512)) { |
| msg_perr("SPI bulk write failed, expected %i, got %s!\n", 512, libusb_error_name(ret)); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dediprog_spi_write(struct flashctx *flash, const uint8_t *buf, |
| unsigned int start, unsigned int len, uint8_t dedi_spi_cmd) |
| { |
| int ret; |
| const unsigned int chunksize = flash->chip->page_size; |
| unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0; |
| unsigned int bulklen; |
| const struct dediprog_data *dp_data = flash->mst->spi.data; |
| |
| dediprog_set_leds(LED_BUSY, dp_data); |
| |
| if (chunksize != 256) { |
| msg_pdbg("Page sizes other than 256 bytes are unsupported as " |
| "we don't know how dediprog\nhandles them.\n"); |
| /* Write everything like it was residue. */ |
| residue = len; |
| } |
| |
| if (residue) { |
| msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n", |
| start, residue); |
| /* No idea about the real limit. Maybe 16 including command and address, maybe more. */ |
| ret = spi_write_chunked(flash, buf, start, residue, 11); |
| if (ret) { |
| dediprog_set_leds(LED_ERROR, dp_data); |
| return ret; |
| } |
| } |
| |
| /* Round down. */ |
| bulklen = (len - residue) / chunksize * chunksize; |
| ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd); |
| if (ret) { |
| dediprog_set_leds(LED_ERROR, dp_data); |
| return ret; |
| } |
| |
| len -= residue + bulklen; |
| if (len) { |
| msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n", |
| start, len); |
| ret = spi_write_chunked(flash, buf + residue + bulklen, |
| start + residue + bulklen, len, 11); |
| if (ret) { |
| dediprog_set_leds(LED_ERROR, dp_data); |
| return ret; |
| } |
| } |
| |
| dediprog_set_leds(LED_PASS, dp_data); |
| return 0; |
| } |
| |
| static int dediprog_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_PAGE_PGM); |
| } |
| |
| static int dediprog_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_2B_AAI); |
| } |
| |
| static int dediprog_spi_send_command(const struct flashctx *flash, |
| unsigned int writecnt, |
| unsigned int readcnt, |
| const unsigned char *writearr, |
| unsigned char *readarr) |
| { |
| int ret; |
| const struct dediprog_data *dp_data = flash->mst->spi.data; |
| |
| msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt); |
| if (writecnt > flash->mst->spi.max_data_write) { |
| msg_perr("Invalid writecnt=%i, aborting.\n", writecnt); |
| return 1; |
| } |
| if (readcnt > flash->mst->spi.max_data_read) { |
| msg_perr("Invalid readcnt=%i, aborting.\n", readcnt); |
| return 1; |
| } |
| |
| unsigned int idx, value; |
| /* New protocol has options and timeout combined as value while the old one used the value field for |
| * timeout and the index field for options. */ |
| if (protocol(dp_data) >= PROTOCOL_V2) { |
| idx = 0; |
| value = readcnt ? 0x1 : 0x0; // Indicate if we require a read |
| } else { |
| idx = readcnt ? 0x1 : 0x0; // Indicate if we require a read |
| value = 0; |
| } |
| ret = dediprog_write(dp_data->handle, CMD_TRANSCEIVE, value, idx, writearr, writecnt); |
| if (ret != (int)writecnt) { |
| msg_perr("Send SPI failed, expected %i, got %i %s!\n", |
| writecnt, ret, libusb_error_name(ret)); |
| return 1; |
| } |
| if (readcnt == 0) // If we don't require a response, we are done here |
| return 0; |
| |
| /* The specifications do state the possibility to set a timeout for transceive transactions. |
| * Apparently the "timeout" is a delay, and you can use long delays to accelerate writing - in case you |
| * can predict the time needed by the previous command or so (untested). In any case, using this |
| * "feature" to set sane-looking timouts for the read below will completely trash performance with |
| * SF600 and/or firmwares >= 6.0 while they seem to be benign on SF100 with firmwares <= 5.5.2. *shrug* |
| * |
| * The specification also uses only 0 in its examples, so the lesson to learn here: |
| * "Never trust the description of an interface in the documentation but use the example code and pray." |
| const uint8_t read_timeout = 10 + readcnt/512; |
| if (protocol() >= PROTOCOL_V2) { |
| idx = 0; |
| value = min(read_timeout, 0xFF) | (0 << 8) ; // Timeout in lower byte, option in upper byte |
| } else { |
| idx = (0 & 0xFF); // Lower byte is option (0x01 = require SR, 0x02 keep CS low) |
| value = min(read_timeout, 0xFF); // Possibly two bytes but we play safe here |
| } |
| ret = dediprog_read(dp_data->dediprog_handle, CMD_TRANSCEIVE, value, idx, readarr, readcnt); |
| */ |
| ret = dediprog_read(dp_data->handle, CMD_TRANSCEIVE, 0, 0, readarr, readcnt); |
| if (ret != (int)readcnt) { |
| msg_perr("Receive SPI failed, expected %i, got %i %s!\n", readcnt, ret, libusb_error_name(ret)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int dediprog_check_devicestring(struct dediprog_data *dp_data) |
| { |
| int ret; |
| char buf[0x11]; |
| |
| /* Command Receive Device String. */ |
| ret = dediprog_read(dp_data->handle, CMD_READ_PROG_INFO, 0, 0, (uint8_t *)buf, 0x10); |
| if (ret != 0x10) { |
| msg_perr("Incomplete/failed Command Receive Device String!\n"); |
| return 1; |
| } |
| buf[0x10] = '\0'; |
| msg_pdbg("Found a %s\n", buf); |
| if (memcmp(buf, "SF100", 0x5) == 0) |
| dp_data->devicetype = DEV_SF100; |
| else if (memcmp(buf, "SF200", 0x5) == 0) |
| dp_data->devicetype = DEV_SF200; |
| else if (memcmp(buf, "SF600", 0x5) == 0) |
| dp_data->devicetype = DEV_SF600; |
| else { |
| msg_perr("Device not a SF100, SF200, or SF600!\n"); |
| return 1; |
| } |
| |
| int sfnum; |
| int fw[3]; |
| if (sscanf(buf, "SF%d V:%d.%d.%d ", &sfnum, &fw[0], &fw[1], &fw[2]) != 4 || |
| sfnum != (int)dp_data->devicetype) { |
| msg_perr("Unexpected firmware version string '%s'\n", buf); |
| return 1; |
| } |
| /* Only these major versions were tested. */ |
| if (fw[0] < 2 || fw[0] > 7) { |
| msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0], fw[1], fw[2]); |
| return 1; |
| } |
| |
| dp_data->firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]); |
| if (protocol(dp_data) == PROTOCOL_UNKNOWN) { |
| msg_perr("Internal error: Unable to determine protocol version.\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Read the id from the dediprog. This should return the numeric part of the |
| * serial number found on a sticker on the back of the dediprog. Note this |
| * number is stored in writable eeprom, so it could get out of sync. Also note, |
| * this function only supports SF100 at this time, but SF600 support is not too |
| * much different. |
| * @return the id on success, -1 on failure |
| */ |
| static int dediprog_read_id(libusb_device_handle *dediprog_handle) |
| { |
| int ret; |
| uint8_t buf[3]; |
| |
| ret = libusb_control_transfer(dediprog_handle, REQTYPE_OTHER_IN, |
| 0x7, /* request */ |
| 0, /* value */ |
| 0xEF00, /* index */ |
| buf, sizeof(buf), |
| DEFAULT_TIMEOUT); |
| if (ret != sizeof(buf)) { |
| msg_perr("Failed to read dediprog id, error %d!\n", ret); |
| return -1; |
| } |
| |
| return buf[0] << 16 | buf[1] << 8 | buf[2]; |
| } |
| |
| /* |
| * This command presumably sets the voltage for the SF100 itself (not the |
| * SPI flash). Only use this command with firmware older than V6.0.0. Newer |
| * (including all SF600s) do not support it. |
| */ |
| |
| /* This command presumably sets the voltage for the SF100 itself (not the SPI flash). |
| * Only use dediprog_set_voltage on SF100 programmers with firmware older |
| * than V6.0.0. Newer programmers (including all SF600s) do not support it. */ |
| static int dediprog_set_voltage(libusb_device_handle *dediprog_handle) |
| { |
| unsigned char buf[1] = {0}; |
| int ret = libusb_control_transfer(dediprog_handle, REQTYPE_OTHER_IN, CMD_SET_VOLTAGE, 0x0, 0x0, |
| buf, 0x1, DEFAULT_TIMEOUT); |
| if (ret < 0) { |
| msg_perr("Command Set Voltage failed (%s)!\n", libusb_error_name(ret)); |
| return 1; |
| } |
| if ((ret != 1) || (buf[0] != 0x6f)) { |
| msg_perr("Unexpected response to init!\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int dediprog_standalone_mode(const struct dediprog_data *dp_data) |
| { |
| int ret; |
| |
| if (dp_data->devicetype != DEV_SF600) |
| return 0; |
| |
| msg_pdbg2("Disabling standalone mode.\n"); |
| ret = dediprog_write(dp_data->handle, CMD_SET_STANDALONE, LEAVE_STANDALONE_MODE, 0, NULL, 0); |
| if (ret) { |
| msg_perr("Failed to disable standalone mode: %s\n", libusb_error_name(ret)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| #if 0 |
| /* Something. |
| * Present in eng_detect_blink.log with firmware 3.1.8 |
| * Always preceded by Command Receive Device String |
| */ |
| static int dediprog_command_b(libusb_device_handle *dediprog_handle) |
| { |
| int ret; |
| char buf[0x3]; |
| |
| ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x7, 0x0, 0xef00, |
| buf, 0x3, DEFAULT_TIMEOUT); |
| if (ret < 0) { |
| msg_perr("Command B failed (%s)!\n", libusb_error_name(ret)); |
| return 1; |
| } |
| if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) || |
| (buf[2] != 0xff)) { |
| msg_perr("Unexpected response to Command B!\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static int set_target_flash(libusb_device_handle *dediprog_handle, enum dediprog_target target) |
| { |
| int ret = dediprog_write(dediprog_handle, CMD_SET_TARGET, target, 0, NULL, 0); |
| if (ret != 0) { |
| msg_perr("set_target_flash failed (%s)!\n", libusb_error_name(ret)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #if 0 |
| /* Returns true if the button is currently pressed. */ |
| static bool dediprog_get_button(libusb_device_handle *dediprog_handle) |
| { |
| char buf[1]; |
| int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_GET_BUTTON, 0, 0, |
| buf, 0x1, DEFAULT_TIMEOUT); |
| if (ret != 0) { |
| msg_perr("Could not get button state (%s)!\n", libusb_error_name(ret)); |
| return 1; |
| } |
| return buf[0] != 1; |
| } |
| #endif |
| |
| static int parse_voltage(char *voltage) |
| { |
| char *tmp = NULL; |
| int i; |
| int millivolt = 0, fraction = 0; |
| |
| if (!voltage || !strlen(voltage)) { |
| msg_perr("Empty voltage= specified.\n"); |
| return -1; |
| } |
| millivolt = (int)strtol(voltage, &tmp, 0); |
| voltage = tmp; |
| /* Handle "," and "." as decimal point. Everything after it is assumed |
| * to be in decimal notation. |
| */ |
| if ((*voltage == '.') || (*voltage == ',')) { |
| voltage++; |
| for (i = 0; i < 3; i++) { |
| fraction *= 10; |
| /* Don't advance if the current character is invalid, |
| * but continue multiplying. |
| */ |
| if ((*voltage < '0') || (*voltage > '9')) |
| continue; |
| fraction += *voltage - '0'; |
| voltage++; |
| } |
| /* Throw away remaining digits. */ |
| voltage += strspn(voltage, "0123456789"); |
| } |
| /* The remaining string must be empty or "mV" or "V". */ |
| tolower_string(voltage); |
| |
| /* No unit or "V". */ |
| if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) { |
| millivolt *= 1000; |
| millivolt += fraction; |
| } else if (!strncmp(voltage, "mv", 2) || |
| !strncmp(voltage, "milliv", 6)) { |
| /* No adjustment. fraction is discarded. */ |
| } else { |
| /* Garbage at the end of the string. */ |
| msg_perr("Garbage voltage= specified.\n"); |
| return -1; |
| } |
| return millivolt; |
| } |
| |
| static struct spi_master spi_master_dediprog = { |
| .features = SPI_MASTER_NO_4BA_MODES, |
| .max_data_read = 16, /* 18 seems to work fine as well, but 19 times out sometimes with FW 5.15. */ |
| .max_data_write = 16, |
| .command = dediprog_spi_send_command, |
| .multicommand = default_spi_send_multicommand, |
| .read = dediprog_spi_read, |
| .write_256 = dediprog_spi_write_256, |
| .write_aai = dediprog_spi_write_aai, |
| }; |
| |
| /* |
| * Open a dediprog_handle with the USB device at the given index. |
| * @index index of the USB device |
| * @return 0 for success, -1 for error, -2 for busy device |
| */ |
| static int dediprog_open(int index, struct dediprog_data *dp_data) |
| { |
| const uint16_t vid = devs_dediprog[0].vendor_id; |
| const uint16_t pid = devs_dediprog[0].device_id; |
| int ret; |
| |
| dp_data->handle = usb_dev_get_by_vid_pid_number(dp_data->usb_ctx, vid, pid, (unsigned int) index); |
| if (!dp_data->handle) { |
| msg_perr("Could not find a Dediprog programmer on USB.\n"); |
| libusb_exit(dp_data->usb_ctx); |
| return -1; |
| } |
| ret = libusb_set_configuration(dp_data->handle, 1); |
| if (ret != 0) { |
| msg_perr("Could not set USB device configuration: %i %s\n", |
| ret, libusb_error_name(ret)); |
| libusb_close(dp_data->handle); |
| return -2; |
| } |
| ret = libusb_claim_interface(dp_data->handle, 0); |
| if (ret < 0) { |
| msg_perr("Could not claim USB device interface %i: %i %s\n", |
| 0, ret, libusb_error_name(ret)); |
| libusb_close(dp_data->handle); |
| return -2; |
| } |
| return 0; |
| } |
| |
| static int dediprog_shutdown(void *data) |
| { |
| int ret = 0; |
| struct dediprog_data *dp_data = data; |
| |
| /* URB 28. Command Set SPI Voltage to 0. */ |
| if (dediprog_set_spi_voltage(dp_data->handle, 0x0)) { |
| ret = 1; |
| goto out; |
| } |
| |
| if (libusb_release_interface(dp_data->handle, 0)) { |
| msg_perr("Could not release USB interface!\n"); |
| ret = 1; |
| goto out; |
| } |
| libusb_close(dp_data->handle); |
| libusb_exit(dp_data->usb_ctx); |
| out: |
| free(data); |
| return ret; |
| } |
| |
| static int dediprog_init(void) |
| { |
| char *voltage, *id_str, *device, *spispeed, *target_str; |
| int spispeed_idx = 1; |
| int millivolt = 3500; |
| int id = -1; /* -1 defaults to enumeration order */ |
| int found_id; |
| long usedevice = 0; |
| long target = FLASH_TYPE_APPLICATION_FLASH_1; |
| int i, ret; |
| |
| spispeed = extract_programmer_param("spispeed"); |
| if (spispeed) { |
| for (i = 0; spispeeds[i].name; ++i) { |
| if (!strcasecmp(spispeeds[i].name, spispeed)) { |
| spispeed_idx = i; |
| break; |
| } |
| } |
| if (!spispeeds[i].name) { |
| msg_perr("Error: Invalid spispeed value: '%s'.\n", spispeed); |
| free(spispeed); |
| return 1; |
| } |
| free(spispeed); |
| } |
| |
| voltage = extract_programmer_param("voltage"); |
| if (voltage) { |
| millivolt = parse_voltage(voltage); |
| free(voltage); |
| if (millivolt < 0) |
| return 1; |
| msg_pinfo("Setting voltage to %i mV\n", millivolt); |
| } |
| |
| id_str = extract_programmer_param("id"); |
| if (id_str) { |
| char prefix0, prefix1; |
| if (sscanf(id_str, "%c%c%d", &prefix0, &prefix1, &id) != 3) { |
| msg_perr("Error: Could not parse dediprog 'id'.\n"); |
| msg_perr("Expected a string like SF012345 or DP012345.\n"); |
| free(id_str); |
| return 1; |
| } |
| if (id < 0 || id >= 0x1000000) { |
| msg_perr("Error: id %s is out of range!\n", id_str); |
| free(id_str); |
| return 1; |
| } |
| if (!(prefix0 == 'S' && prefix1 == 'F') && !(prefix0 == 'D' && prefix1 == 'P')) { |
| msg_perr("Error: %s is an invalid id!\n", id_str); |
| free(id_str); |
| return 1; |
| } |
| msg_pinfo("Will search for dediprog id %s.\n", id_str); |
| } |
| free(id_str); |
| |
| device = extract_programmer_param("device"); |
| if (device) { |
| char *dev_suffix; |
| if (id != -1) { |
| msg_perr("Error: Cannot use 'id' and 'device'.\n"); |
| } |
| errno = 0; |
| usedevice = strtol(device, &dev_suffix, 10); |
| if (errno != 0 || device == dev_suffix) { |
| msg_perr("Error: Could not convert 'device'.\n"); |
| free(device); |
| return 1; |
| } |
| if (usedevice < 0 || usedevice > INT_MAX) { |
| msg_perr("Error: Value for 'device' is out of range.\n"); |
| free(device); |
| return 1; |
| } |
| if (strlen(dev_suffix) > 0) { |
| msg_perr("Error: Garbage following 'device' value.\n"); |
| free(device); |
| return 1; |
| } |
| msg_pinfo("Using device %li.\n", usedevice); |
| } |
| free(device); |
| |
| target_str = extract_programmer_param("target"); |
| if (target_str) { |
| char *target_suffix; |
| errno = 0; |
| target = strtol(target_str, &target_suffix, 10); |
| if (errno != 0 || target_str == target_suffix) { |
| msg_perr("Error: Could not convert 'target'.\n"); |
| free(target_str); |
| return 1; |
| } |
| if (target < 1 || target > 2) { |
| msg_perr("Error: Value for 'target' is out of range.\n"); |
| free(target_str); |
| return 1; |
| } |
| if (strlen(target_suffix) > 0) { |
| msg_perr("Error: Garbage following 'target' value.\n"); |
| free(target_str); |
| return 1; |
| } |
| switch (target) { |
| case 1: |
| msg_pinfo("Using target %s.\n", "FLASH_TYPE_APPLICATION_FLASH_1"); |
| target = FLASH_TYPE_APPLICATION_FLASH_1; |
| break; |
| case 2: |
| msg_pinfo("Using target %s.\n", "FLASH_TYPE_APPLICATION_FLASH_2"); |
| target = FLASH_TYPE_APPLICATION_FLASH_2; |
| break; |
| default: |
| break; |
| } |
| } |
| free(target_str); |
| |
| struct dediprog_data *dp_data = calloc(1, sizeof(*dp_data)); |
| if (!dp_data) { |
| msg_perr("Unable to allocate space for SPI master data\n"); |
| return 1; |
| } |
| dp_data->firmwareversion = FIRMWARE_VERSION(0, 0, 0); |
| dp_data->devicetype = DEV_UNKNOWN; |
| |
| /* Here comes the USB stuff. */ |
| libusb_init(&dp_data->usb_ctx); |
| if (!dp_data->usb_ctx) { |
| msg_perr("Could not initialize libusb!\n"); |
| goto init_err_exit; |
| } |
| |
| if (id != -1) { |
| for (i = 0; ; i++) { |
| ret = dediprog_open(i, dp_data); |
| if (ret == -1) { |
| /* no dev */ |
| goto init_err_exit; |
| } else if (ret == -2) { |
| /* busy dev */ |
| continue; |
| } |
| |
| /* Notice we can only call dediprog_read_id() after |
| * libusb_set_configuration() and |
| * libusb_claim_interface(). When searching by id and |
| * either configuration or claim fails (usually the |
| * device is in use by another instance of flashrom), |
| * the device is skipped and the next device is tried. |
| */ |
| found_id = dediprog_read_id(dp_data->handle); |
| if (found_id < 0) { |
| msg_perr("Could not read id.\n"); |
| libusb_release_interface(dp_data->handle, 0); |
| libusb_close(dp_data->handle); |
| continue; |
| } |
| msg_pinfo("Found dediprog id SF%06d.\n", found_id); |
| if (found_id != id) { |
| libusb_release_interface(dp_data->handle, 0); |
| libusb_close(dp_data->handle); |
| continue; |
| } |
| break; |
| } |
| } else { |
| if (dediprog_open(usedevice, dp_data)) { |
| goto init_err_exit; |
| } |
| found_id = dediprog_read_id(dp_data->handle); |
| } |
| |
| if (found_id >= 0) { |
| msg_pinfo("Using dediprog id SF%06d.\n", found_id); |
| } |
| |
| /* Try reading the devicestring. If that fails and the device is old (FW < 6.0.0, which we can not know) |
| * then we need to try the "set voltage" command and then attempt to read the devicestring again. */ |
| if (dediprog_check_devicestring(dp_data)) { |
| if (dediprog_set_voltage(dp_data->handle)) |
| goto init_err_cleanup_exit; |
| if (dediprog_check_devicestring(dp_data)) |
| goto init_err_cleanup_exit; |
| } |
| |
| /* SF100/SF200 uses one in/out endpoint, SF600 uses separate in/out endpoints */ |
| dp_data->in_endpoint = 2; |
| switch (dp_data->devicetype) { |
| case DEV_SF100: |
| case DEV_SF200: |
| dp_data->out_endpoint = 2; |
| break; |
| default: |
| dp_data->out_endpoint = 1; |
| break; |
| } |
| |
| /* Set all possible LEDs as soon as possible to indicate activity. |
| * Because knowing the firmware version is required to set the LEDs correctly we need to this after |
| * dediprog_check_devicestring() has queried the device. */ |
| dediprog_set_leds(LED_ALL, dp_data); |
| |
| /* Select target/socket, frequency and VCC. */ |
| if (set_target_flash(dp_data->handle, target) || |
| dediprog_set_spi_speed(spispeed_idx, dp_data) || |
| dediprog_set_spi_voltage(dp_data->handle, millivolt)) { |
| dediprog_set_leds(LED_ERROR, dp_data); |
| goto init_err_cleanup_exit; |
| } |
| |
| if (dediprog_standalone_mode(dp_data)) |
| goto init_err_cleanup_exit; |
| |
| if ((dp_data->devicetype == DEV_SF100) || |
| (dp_data->devicetype == DEV_SF600 && protocol(dp_data) == PROTOCOL_V3)) |
| spi_master_dediprog.features &= ~SPI_MASTER_NO_4BA_MODES; |
| |
| if (protocol(dp_data) >= PROTOCOL_V2) |
| spi_master_dediprog.features |= SPI_MASTER_4BA; |
| |
| if (register_shutdown(dediprog_shutdown, dp_data)) |
| goto init_err_cleanup_exit; |
| |
| spi_master_dediprog.data = dp_data; |
| if (register_spi_master(&spi_master_dediprog) || dediprog_set_leds(LED_NONE, dp_data)) |
| return 1; /* shutdown function does cleanup */ |
| |
| return 0; |
| |
| init_err_cleanup_exit: |
| dediprog_shutdown(dp_data); |
| return 1; |
| |
| init_err_exit: |
| free(dp_data); |
| return 1; |
| } |
| |
| const struct programmer_entry programmer_dediprog = { |
| .name = "dediprog", |
| .type = USB, |
| .devs.dev = devs_dediprog, |
| .init = dediprog_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }; |