blob: 921672c2788e50c3c1ac6d02f3189adb4fe91bc9 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Paul Fox <pgf@laptop.org>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdbool.h>
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "flash.h"
#include "programmer.h"
#include "spi.h"
#include <ftdi.h>
/* This is not defined in libftdi.h <0.20 (c7e4c09e68cfa6f5e112334aa1b3bb23401c8dc7 to be exact).
* Some tests indicate that this is the only change that it is needed to support the FT232H in flashrom. */
#if !defined(HAVE_FT232H)
#define TYPE_232H 6
#endif
/* Please keep sorted by vendor ID, then device ID. */
#define FTDI_VID 0x0403
#define FTDI_FT2232H_PID 0x6010
#define FTDI_FT4232H_PID 0x6011
#define FTDI_FT232H_PID 0x6014
#define FTDI_FT4233H_PID 0x6041
#define TIAO_TUMPA_PID 0x8a98
#define TIAO_TUMPA_LITE_PID 0x8a99
#define KT_LINK_PID 0xbbe2
#define AMONTEC_JTAGKEY_PID 0xCFF8
#define GOEPEL_VID 0x096C
#define GOEPEL_PICOTAP_PID 0x1449
#define FIC_VID 0x1457
#define OPENMOKO_DBGBOARD_PID 0x5118
#define OLIMEX_VID 0x15BA
#define OLIMEX_ARM_OCD_PID 0x0003
#define OLIMEX_ARM_TINY_PID 0x0004
#define OLIMEX_ARM_OCD_H_PID 0x002B
#define OLIMEX_ARM_TINY_H_PID 0x002A
#define GOOGLE_VID 0x18D1
#define GOOGLE_SERVO_PID 0x5001
#define GOOGLE_SERVO_V2_PID0 0x5002
#define GOOGLE_SERVO_V2_PID1 0x5003
static const struct dev_entry devs_ft2232spi[] = {
{FTDI_VID, FTDI_FT2232H_PID, OK, "FTDI", "FT2232H"},
{FTDI_VID, FTDI_FT4232H_PID, OK, "FTDI", "FT4232H"},
{FTDI_VID, FTDI_FT232H_PID, OK, "FTDI", "FT232H"},
{FTDI_VID, FTDI_FT4233H_PID, OK, "FTDI", "FT4233H"},
{FTDI_VID, TIAO_TUMPA_PID, OK, "TIAO", "USB Multi-Protocol Adapter"},
{FTDI_VID, TIAO_TUMPA_LITE_PID, OK, "TIAO", "USB Multi-Protocol Adapter Lite"},
{FTDI_VID, KT_LINK_PID, OK, "Kristech", "KT-LINK"},
{FTDI_VID, AMONTEC_JTAGKEY_PID, OK, "Amontec", "JTAGkey"},
{GOEPEL_VID, GOEPEL_PICOTAP_PID, OK, "GOEPEL", "PicoTAP"},
{GOOGLE_VID, GOOGLE_SERVO_PID, OK, "Google", "Servo"},
{GOOGLE_VID, GOOGLE_SERVO_V2_PID0, OK, "Google", "Servo V2 Legacy"},
{GOOGLE_VID, GOOGLE_SERVO_V2_PID1, OK, "Google", "Servo V2"},
{FIC_VID, OPENMOKO_DBGBOARD_PID, OK, "FIC", "OpenMoko Neo1973 Debug board (V2+)"},
{OLIMEX_VID, OLIMEX_ARM_OCD_PID, OK, "Olimex", "ARM-USB-OCD"},
{OLIMEX_VID, OLIMEX_ARM_TINY_PID, OK, "Olimex", "ARM-USB-TINY"},
{OLIMEX_VID, OLIMEX_ARM_OCD_H_PID, OK, "Olimex", "ARM-USB-OCD-H"},
{OLIMEX_VID, OLIMEX_ARM_TINY_H_PID, OK, "Olimex", "ARM-USB-TINY-H"},
{0},
};
#define FTDI_HW_BUFFER_SIZE 4096 /* in bytes */
#define DEFAULT_DIVISOR 2
#define BITMODE_BITBANG_NORMAL 1
#define BITMODE_BITBANG_SPI 2
/*
* The variables `cs_bits` and `pindir` store the values for the
* "set data bits low byte" MPSSE command that sets the initial
* state and the direction of the I/O pins. `cs_bits` pins default
* to high and will be toggled during SPI transactions. All other
* output pins will be kept low all the time. For some programmers,
* some reserved GPIOL* pins are used as outputs. Free GPIOL* pins
* are configured as inputs, while it's possible to use them either
* as generic gpios or as additional CS# signal(s) through the
* parameter(s) `gpiolX`. On exit, all pins will be reconfigured
* as inputs.
*
* The pin offsets are as follows:
* TCK/SK is bit 0.
* TDI/DO is bit 1.
* TDO/DI is bit 2.
* TMS/CS is bit 3.
* GPIOL0 is bit 4.
* GPIOL1 is bit 5.
* GPIOL2 is bit 6.
* GPIOL3 is bit 7.
*
* The default values (set below in ft2232_spi_init) are used for
* most devices:
* value: 0x08 CS=high, DI=low, DO=low, SK=low
* dir: 0x0b CS=output, DI=input, DO=output, SK=output
*/
struct ft2232_data {
uint8_t cs_bits;
uint8_t aux_bits;
uint8_t pindir;
struct ftdi_context ftdi_context;
};
static const char *get_ft2232_devicename(int ft2232_vid, int ft2232_type)
{
int i;
for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) {
if ((devs_ft2232spi[i].device_id == ft2232_type) && (devs_ft2232spi[i].vendor_id == ft2232_vid))
return devs_ft2232spi[i].device_name;
}
return "unknown device";
}
static const char *get_ft2232_vendorname(int ft2232_vid, int ft2232_type)
{
int i;
for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) {
if ((devs_ft2232spi[i].device_id == ft2232_type) && (devs_ft2232spi[i].vendor_id == ft2232_vid))
return devs_ft2232spi[i].vendor_name;
}
return "unknown vendor";
}
static int send_buf(struct ftdi_context *ftdic, const unsigned char *buf,
int size)
{
int r;
r = ftdi_write_data(ftdic, (unsigned char *) buf, size);
if (r < 0) {
msg_perr("ftdi_write_data: %d, %s\n", r, ftdi_get_error_string(ftdic));
return 1;
}
return 0;
}
static int get_buf(struct ftdi_context *ftdic, const unsigned char *buf,
int size)
{
int r;
while (size > 0) {
r = ftdi_read_data(ftdic, (unsigned char *) buf, size);
if (r < 0) {
msg_perr("ftdi_read_data: %d, %s\n", r, ftdi_get_error_string(ftdic));
return 1;
}
buf += r;
size -= r;
}
return 0;
}
static int ft2232_shutdown(void *data)
{
struct ft2232_data *spi_data = (struct ft2232_data *)data;
struct ftdi_context *ftdic = &spi_data->ftdi_context;
unsigned char buf[3];
int ret = 0;
msg_pdbg("Releasing I/Os\n");
buf[0] = SET_BITS_LOW;
buf[1] = 0; /* Output byte ignored */
buf[2] = 0; /* Pin direction: all inputs */
if (send_buf(ftdic, buf, 3)) {
msg_perr("Unable to set pins back to inputs.\n");
ret = 1;
}
const int close_ret = ftdi_usb_close(ftdic);
if (close_ret < 0) {
msg_perr("Unable to close FTDI device: %d (%s)\n", close_ret,
ftdi_get_error_string(ftdic));
ret = 1;
}
free(spi_data);
return ret;
}
static bool ft2232_spi_command_fits(const struct spi_command *cmd, size_t buffer_size)
{
const size_t cmd_len = 3; /* same length for any ft2232 command */
return
/* commands for CS# assertion and de-assertion: */
cmd_len + cmd_len
/* commands for either a write, a read or both: */
+ (cmd->writecnt && cmd->readcnt ? cmd_len + cmd_len : cmd_len)
/* payload (only writecnt; readcnt concerns another buffer): */
+ cmd->writecnt
<= buffer_size;
}
/* Returns 0 upon success, a negative number upon errors. */
static int ft2232_spi_send_multicommand(const struct flashctx *flash, struct spi_command *cmds)
{
struct ft2232_data *spi_data = flash->mst->spi.data;
struct ftdi_context *ftdic = &spi_data->ftdi_context;
static unsigned char buf[FTDI_HW_BUFFER_SIZE];
size_t i = 0;
int ret = 0;
/*
* Minimize FTDI-calls by packing as many commands as possible together.
*/
for (; cmds->writecnt || cmds->readcnt; cmds++) {
if (cmds->writecnt > 65536 || cmds->readcnt > 65536)
return SPI_INVALID_LENGTH;
if (!ft2232_spi_command_fits(cmds, FTDI_HW_BUFFER_SIZE - i)) {
msg_perr("Command does not fit\n");
return SPI_GENERIC_ERROR;
}
msg_pspew("Assert CS#\n");
buf[i++] = SET_BITS_LOW;
/* assert CS# pins, keep aux_bits, all other output pins stay low */
buf[i++] = spi_data->aux_bits;
buf[i++] = spi_data->pindir;
/* WREN, OP(PROGRAM, ERASE), ADDR, DATA */
if (cmds->writecnt) {
buf[i++] = MPSSE_DO_WRITE | MPSSE_WRITE_NEG;
buf[i++] = (cmds->writecnt - 1) & 0xff;
buf[i++] = ((cmds->writecnt - 1) >> 8) & 0xff;
memcpy(buf + i, cmds->writearr, cmds->writecnt);
i += cmds->writecnt;
}
/* An optional read command */
if (cmds->readcnt) {
buf[i++] = MPSSE_DO_READ;
buf[i++] = (cmds->readcnt - 1) & 0xff;
buf[i++] = ((cmds->readcnt - 1) >> 8) & 0xff;
}
/* Add final de-assert CS# */
msg_pspew("De-assert CS#\n");
buf[i++] = SET_BITS_LOW;
buf[i++] = spi_data->cs_bits | spi_data->aux_bits;
buf[i++] = spi_data->pindir;
/* continue if there is no read-cmd and further cmds exist */
if (!cmds->readcnt &&
((cmds + 1)->writecnt || (cmds + 1)->readcnt) &&
ft2232_spi_command_fits((cmds + 1), FTDI_HW_BUFFER_SIZE - i)) {
continue;
}
ret = send_buf(ftdic, buf, i);
i = 0;
if (ret) {
msg_perr("send_buf failed: %i\n", ret);
break;
}
if (cmds->readcnt) {
ret = get_buf(ftdic, cmds->readarr, cmds->readcnt);
if (ret) {
msg_perr("get_buf failed: %i\n", ret);
break;
}
}
}
return ret ? -1 : 0;
}
static const struct spi_master spi_master_ft2232 = {
.features = SPI_MASTER_4BA,
.max_data_read = 64 * 1024,
.max_data_write = 256,
.command = default_spi_send_command,
.multicommand = ft2232_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.shutdown = ft2232_shutdown,
};
/* Returns 0 upon success, a negative number upon errors. */
static int ft2232_spi_init(void)
{
int ret;
unsigned char buf[512];
int ft2232_vid = FTDI_VID;
int ft2232_type = FTDI_FT4232H_PID;
int channel_count = 4; /* Stores the number of channels of the device. */
enum ftdi_interface ft2232_interface = INTERFACE_A;
/*
* The 'H' chips can run with an internal clock of either 12 MHz or 60 MHz,
* but the non-H chips can only run at 12 MHz. We disable the divide-by-5
* prescaler on 'H' chips so they run at 60MHz.
*/
bool clock_5x = true;
/* In addition to the prescaler mentioned above there is also another
* configurable one on all versions of the chips. Its divisor div can be
* set by a 16 bit value x according to the following formula:
* div = (1 + x) * 2 <-> x = div / 2 - 1
* Hence the expressible divisors are all even numbers between 2 and
* 2^17 (=131072) resulting in SCK frequencies of 6 MHz down to about
* 92 Hz for 12 MHz inputs and 30 MHz down to about 458 Hz for 60 MHz
* inputs.
*/
uint32_t divisor = DEFAULT_DIVISOR;
int f;
char *arg, *arg2;
double mpsse_clk;
uint8_t cs_bits = 0x08;
uint8_t aux_bits = 0x00;
uint8_t pindir = 0x0b;
uint8_t aux_bits_high = 0x00;
uint8_t pindir_high = 0x00;
struct ft2232_data *const spi_data = calloc(1, sizeof(*spi_data));
if (!spi_data) {
msg_perr("Unable to allocate space for SPI master data\n");
return SPI_GENERIC_ERROR;
}
arg = extract_programmer_param("type");
if (arg) {
if (!strcasecmp(arg, "2232H")) {
ft2232_type = FTDI_FT2232H_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "4232H")) {
ft2232_type = FTDI_FT4232H_PID;
channel_count = 4;
} else if (!strcasecmp(arg, "232H")) {
ft2232_type = FTDI_FT232H_PID;
channel_count = 1;
} else if (!strcasecmp(arg, "4233H")) {
ft2232_type = FTDI_FT4233H_PID;
channel_count = 4;
} else if (!strcasecmp(arg, "jtagkey")) {
ft2232_type = AMONTEC_JTAGKEY_PID;
channel_count = 2;
/* JTAGkey(2) needs to enable its output via Bit4 / GPIOL0
* value: 0x18 OE=high, CS=high, DI=low, DO=low, SK=low
* dir: 0x1b OE=output, CS=output, DI=input, DO=output, SK=output */
cs_bits = 0x18;
pindir = 0x1b;
} else if (!strcasecmp(arg, "picotap")) {
ft2232_vid = GOEPEL_VID;
ft2232_type = GOEPEL_PICOTAP_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "tumpa")) {
/* Interface A is SPI1, B is SPI2. */
ft2232_type = TIAO_TUMPA_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "tumpalite")) {
/* Only one channel is used on lite edition */
ft2232_type = TIAO_TUMPA_LITE_PID;
channel_count = 1;
} else if (!strcasecmp(arg, "busblaster")) {
/* In its default configuration it is a jtagkey clone */
ft2232_type = FTDI_FT2232H_PID;
channel_count = 2;
cs_bits = 0x18;
pindir = 0x1b;
} else if (!strcasecmp(arg, "openmoko")) {
ft2232_vid = FIC_VID;
ft2232_type = OPENMOKO_DBGBOARD_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "arm-usb-ocd")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_OCD_PID;
channel_count = 2;
/* arm-usb-ocd(-h) has an output buffer that needs to be enabled by pulling ADBUS4 low.
* value: 0x08 #OE=low, CS=high, DI=low, DO=low, SK=low
* dir: 0x1b #OE=output, CS=output, DI=input, DO=output, SK=output */
cs_bits = 0x08;
pindir = 0x1b;
} else if (!strcasecmp(arg, "arm-usb-tiny")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_TINY_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "arm-usb-ocd-h")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_OCD_H_PID;
channel_count = 2;
/* See arm-usb-ocd */
cs_bits = 0x08;
pindir = 0x1b;
} else if (!strcasecmp(arg, "arm-usb-tiny-h")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_TINY_H_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "google-servo")) {
ft2232_vid = GOOGLE_VID;
ft2232_type = GOOGLE_SERVO_PID;
} else if (!strcasecmp(arg, "google-servo-v2")) {
ft2232_vid = GOOGLE_VID;
ft2232_type = GOOGLE_SERVO_V2_PID1;
/* Default divisor is too fast, and chip ID fails */
divisor = 6;
} else if (!strcasecmp(arg, "google-servo-v2-legacy")) {
ft2232_vid = GOOGLE_VID;
ft2232_type = GOOGLE_SERVO_V2_PID0;
} else if (!strcasecmp(arg, "flyswatter")) {
ft2232_type = FTDI_FT2232H_PID;
channel_count = 2;
/* Flyswatter and Flyswatter-2 require GPIO bits 0x80
* and 0x40 to be driven low to enable output buffers */
pindir = 0xcb;
} else if (!strcasecmp(arg, "kt-link")) {
ft2232_type = KT_LINK_PID;
/* port B is used as uart */
channel_count = 1;
/* Set GPIOL1 output high - route TMS and TDO through multiplexers */
aux_bits = 0x20;
pindir = 0x2b;
/* Set GPIOH4 output low - enable TMS output buffer */
/* Set GPIOH5 output low - enable TDI output buffer */
/* Set GPIOH6 output low - enable TCK output buffer */
pindir_high = 0x70;
} else {
msg_perr("Error: Invalid device type specified.\n");
free(arg);
ret = -1;
goto init_err;
}
}
free(arg);
/* Remember reserved pins before pindir gets modified. */
const uint8_t rsv_bits = pindir & 0xf0;
arg = extract_programmer_param("port");
if (arg) {
switch (toupper((unsigned char)*arg)) {
case 'A':
ft2232_interface = INTERFACE_A;
break;
case 'B':
ft2232_interface = INTERFACE_B;
if (channel_count < 2)
channel_count = -1;
break;
case 'C':
ft2232_interface = INTERFACE_C;
if (channel_count < 3)
channel_count = -1;
break;
case 'D':
ft2232_interface = INTERFACE_D;
if (channel_count < 4)
channel_count = -1;
break;
default:
channel_count = -1;
break;
}
if (channel_count < 0 || strlen(arg) != 1) {
msg_perr("Error: Invalid channel/port/interface specified: \"%s\".\n", arg);
free(arg);
ret = -2;
goto init_err;
}
}
free(arg);
arg = extract_programmer_param("divisor");
if (arg && strlen(arg)) {
unsigned int temp = 0;
char *endptr;
temp = strtoul(arg, &endptr, 10);
if (*endptr || temp < 2 || temp > 131072 || temp & 0x1) {
msg_perr("Error: Invalid SPI frequency divisor specified: \"%s\".\n"
"Valid are even values between 2 and 131072.\n", arg);
free(arg);
ret = -2;
goto init_err;
}
divisor = (uint32_t)temp;
}
free(arg);
bool csgpiol_set = false;
arg = extract_programmer_param("csgpiol");
if (arg) {
csgpiol_set = true;
msg_pwarn("Deprecation warning: `csgpiol` is deprecated and will be removed "
"in the future.\nUse `gpiolX=C` instead.\n");
char *endptr;
unsigned int temp = strtoul(arg, &endptr, 10);
if (*endptr || endptr == arg || temp > 3) {
msg_perr("Error: Invalid GPIOL specified: \"%s\".\n"
"Valid values are between 0 and 3.\n", arg);
free(arg);
ret = -2;
goto init_err;
}
unsigned int pin = temp + 4;
if (rsv_bits & 1 << pin) {
msg_perr("Error: Invalid GPIOL specified: \"%s\".\n"
"The pin is reserved on this programmer.\n",
arg);
free(arg);
return -2;
}
cs_bits |= 1 << pin;
pindir |= 1 << pin;
}
free(arg);
/* gpiolX */
int pin;
for (pin = 0; pin < 4; pin++) {
char gpiol_param[7];
snprintf(gpiol_param, sizeof(gpiol_param), "gpiol%d", pin);
arg = extract_programmer_param(gpiol_param);
if (!arg)
continue;
if (csgpiol_set) {
msg_perr("Error: `csgpiol` and `gpiolX` are mutually exclusive.\n"
"Since `csgpiol` is deprecated and will be removed in the "
"future, use of `gpiolX=C` is recommended.\n");
free(arg);
return -2;
}
uint8_t bit = 1 << (pin + 4);
if (rsv_bits & bit) {
msg_perr("Error: Invalid GPIOL specified: \"gpiol%d=%s\".\n"
"Pin GPIOL%i is reserved on this programmer.\n",
pin, arg, pin);
free(arg);
return -2;
}
if (strlen(arg) != 1)
goto format_error;
switch (toupper((unsigned char)arg[0])) {
case 'H':
aux_bits |= bit;
pindir |= bit;
break;
case 'L':
pindir |= bit;
break;
case 'C':
cs_bits |= bit;
pindir |= bit;
break;
default:
goto format_error;
}
free(arg);
continue;
format_error:
msg_perr("Error: Invalid GPIOL specified: \"gpiol%d=%s\".\n"
"Valid values are H, L and C.\n"
" H - Set GPIOL output high\n"
" L - Set GPIOL output low\n"
" C - Use GPIOL as additional CS# output\n",
pin, arg);
free(arg);
return -2;
}
msg_pdbg("Using device type %s %s ",
get_ft2232_vendorname(ft2232_vid, ft2232_type),
get_ft2232_devicename(ft2232_vid, ft2232_type));
msg_pdbg("channel %s.\n",
(ft2232_interface == INTERFACE_A) ? "A" :
(ft2232_interface == INTERFACE_B) ? "B" :
(ft2232_interface == INTERFACE_C) ? "C" : "D");
struct ftdi_context *const ftdic = &spi_data->ftdi_context;
if (ftdi_init(ftdic) < 0) {
msg_perr("ftdi_init failed.\n");
ret = -3;
goto init_err;
}
if (ftdi_set_interface(ftdic, ft2232_interface) < 0) {
msg_perr("Unable to select channel (%s).\n", ftdi_get_error_string(ftdic));
}
arg = extract_programmer_param("serial");
arg2 = extract_programmer_param("description");
f = ftdi_usb_open_desc(ftdic, ft2232_vid, ft2232_type, arg2, arg);
free(arg);
free(arg2);
if (f < 0 && f != -5) {
msg_perr("Unable to open FTDI device: %d (%s).\n", f, ftdi_get_error_string(ftdic));
ret = -4;
goto init_err;
}
if (ftdic->type != TYPE_2232H && ftdic->type != TYPE_4232H && ftdic->type != TYPE_232H) {
msg_pdbg("FTDI chip type %d is not high-speed.\n", ftdic->type);
clock_5x = false;
}
if (ftdi_usb_reset(ftdic) < 0) {
msg_perr("Unable to reset FTDI device (%s).\n", ftdi_get_error_string(ftdic));
}
if (ftdi_set_latency_timer(ftdic, 2) < 0) {
msg_perr("Unable to set latency timer (%s).\n", ftdi_get_error_string(ftdic));
}
if (ftdi_set_bitmode(ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) {
msg_perr("Unable to set bitmode to SPI (%s).\n", ftdi_get_error_string(ftdic));
}
if (clock_5x) {
msg_pdbg("Disable divide-by-5 front stage\n");
buf[0] = DIS_DIV_5;
if (send_buf(ftdic, buf, 1)) {
ret = -5;
goto ftdi_err;
}
mpsse_clk = 60.0;
} else {
mpsse_clk = 12.0;
}
msg_pdbg("Set clock divisor\n");
buf[0] = TCK_DIVISOR;
buf[1] = (divisor / 2 - 1) & 0xff;
buf[2] = ((divisor / 2 - 1) >> 8) & 0xff;
if (send_buf(ftdic, buf, 3)) {
ret = -6;
goto ftdi_err;
}
msg_pdbg("MPSSE clock: %f MHz, divisor: %u, SPI clock: %f MHz\n",
mpsse_clk, divisor, (double)(mpsse_clk / divisor));
/* Disconnect TDI/DO to TDO/DI for loopback. */
msg_pdbg("No loopback of TDI/DO TDO/DI\n");
buf[0] = LOOPBACK_END;
if (send_buf(ftdic, buf, 1)) {
ret = -7;
goto ftdi_err;
}
msg_pdbg("Set data bits\n");
buf[0] = SET_BITS_LOW;
buf[1] = cs_bits | aux_bits;
buf[2] = pindir;
if (send_buf(ftdic, buf, 3)) {
ret = -8;
goto ftdi_err;
}
if (pindir_high) {
msg_pdbg("Set data bits HighByte\n");
buf[0] = SET_BITS_HIGH;
buf[1] = aux_bits_high;
buf[2] = pindir_high;
if (send_buf(ftdic, buf, 3)) {
ret = -8;
goto ftdi_err;
}
}
spi_data->cs_bits = cs_bits;
spi_data->aux_bits = aux_bits;
spi_data->pindir = pindir;
return register_spi_master(&spi_master_ft2232, spi_data);
ftdi_err:
if ((f = ftdi_usb_close(ftdic)) < 0) {
msg_perr("Unable to close FTDI device: %d (%s)\n", f, ftdi_get_error_string(ftdic));
}
init_err:
free(spi_data);
return ret;
}
const struct programmer_entry programmer_ft2232_spi = {
.name = "ft2232_spi",
.type = USB,
.devs.dev = devs_ft2232spi,
.init = ft2232_spi_init,
};