| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com> |
| * Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com> |
| * Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com> |
| * Copyright (C) 2008 coresystems GmbH <info@coresystems.de> |
| * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger |
| * Copyright (C) 2011 Stefan Tauner |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| |
| #include <string.h> |
| #include <stdlib.h> |
| #include "flash.h" |
| #include "programmer.h" |
| #include "hwaccess.h" |
| #include "spi.h" |
| #include "ich_descriptors.h" |
| |
| /* Sunrise Point */ |
| |
| /* Added HSFS Status bits */ |
| #define HSFS_WRSDIS_OFF 11 /* 11: Flash Configuration Lock-Down */ |
| #define HSFS_WRSDIS (0x1 << HSFS_WRSDIS_OFF) |
| #define HSFS_PRR34_LOCKDN_OFF 12 /* 12: PRR3 PRR4 Lock-Down */ |
| #define HSFS_PRR34_LOCKDN (0x1 << HSFS_PRR34_LOCKDN_OFF) |
| /* HSFS_BERASE vanished */ |
| |
| /* |
| * HSFC and HSFS 16-bit registers are combined into the 32-bit |
| * BIOS_HSFSTS_CTL register in the Sunrise Point datasheet, |
| * however we still treat them separately in order to reuse code. |
| */ |
| |
| /* Changed HSFC Control bits */ |
| #define PCH100_HSFC_FCYCLE_OFF (17 - 16) /* 1-4: FLASH Cycle */ |
| #define PCH100_HSFC_FCYCLE (0xf << PCH100_HSFC_FCYCLE_OFF) |
| /* New HSFC Control bit */ |
| #define HSFC_WET_OFF (21 - 16) /* 5: Write Enable Type */ |
| #define HSFC_WET (0x1 << HSFC_WET_OFF) |
| |
| #define PCH100_FADDR_FLA 0x07ffffff |
| |
| #define PCH100_REG_DLOCK 0x0c /* 32 Bits Discrete Lock Bits */ |
| #define DLOCK_BMWAG_LOCKDN_OFF 0 |
| #define DLOCK_BMWAG_LOCKDN (0x1 << DLOCK_BMWAG_LOCKDN_OFF) |
| #define DLOCK_BMRAG_LOCKDN_OFF 1 |
| #define DLOCK_BMRAG_LOCKDN (0x1 << DLOCK_BMRAG_LOCKDN_OFF) |
| #define DLOCK_SBMWAG_LOCKDN_OFF 2 |
| #define DLOCK_SBMWAG_LOCKDN (0x1 << DLOCK_SBMWAG_LOCKDN_OFF) |
| #define DLOCK_SBMRAG_LOCKDN_OFF 3 |
| #define DLOCK_SBMRAG_LOCKDN (0x1 << DLOCK_SBMRAG_LOCKDN_OFF) |
| #define DLOCK_PR0_LOCKDN_OFF 8 |
| #define DLOCK_PR0_LOCKDN (0x1 << DLOCK_PR0_LOCKDN_OFF) |
| #define DLOCK_PR1_LOCKDN_OFF 9 |
| #define DLOCK_PR1_LOCKDN (0x1 << DLOCK_PR1_LOCKDN_OFF) |
| #define DLOCK_PR2_LOCKDN_OFF 10 |
| #define DLOCK_PR2_LOCKDN (0x1 << DLOCK_PR2_LOCKDN_OFF) |
| #define DLOCK_PR3_LOCKDN_OFF 11 |
| #define DLOCK_PR3_LOCKDN (0x1 << DLOCK_PR3_LOCKDN_OFF) |
| #define DLOCK_PR4_LOCKDN_OFF 12 |
| #define DLOCK_PR4_LOCKDN (0x1 << DLOCK_PR4_LOCKDN_OFF) |
| #define DLOCK_SSEQ_LOCKDN_OFF 16 |
| #define DLOCK_SSEQ_LOCKDN (0x1 << DLOCK_SSEQ_LOCKDN_OFF) |
| |
| #define PCH100_REG_FPR0 0x84 /* 32 Bits Protected Range 0 */ |
| #define PCH100_REG_GPR0 0x98 /* 32 Bits Global Protected Range 0 */ |
| |
| #define PCH100_REG_SSFSC 0xA0 /* 32 Bits Status (8) + Control (24) */ |
| #define PCH100_REG_PREOP 0xA4 /* 16 Bits */ |
| #define PCH100_REG_OPTYPE 0xA6 /* 16 Bits */ |
| #define PCH100_REG_OPMENU 0xA8 /* 64 Bits */ |
| |
| /* ICH9 controller register definition */ |
| #define ICH9_REG_HSFS 0x04 /* 16 Bits Hardware Sequencing Flash Status */ |
| #define HSFS_FDONE_OFF 0 /* 0: Flash Cycle Done */ |
| #define HSFS_FDONE (0x1 << HSFS_FDONE_OFF) |
| #define HSFS_FCERR_OFF 1 /* 1: Flash Cycle Error */ |
| #define HSFS_FCERR (0x1 << HSFS_FCERR_OFF) |
| #define HSFS_AEL_OFF 2 /* 2: Access Error Log */ |
| #define HSFS_AEL (0x1 << HSFS_AEL_OFF) |
| #define HSFS_BERASE_OFF 3 /* 3-4: Block/Sector Erase Size */ |
| #define HSFS_BERASE (0x3 << HSFS_BERASE_OFF) |
| #define HSFS_SCIP_OFF 5 /* 5: SPI Cycle In Progress */ |
| #define HSFS_SCIP (0x1 << HSFS_SCIP_OFF) |
| /* 6-12: reserved */ |
| #define HSFS_FDOPSS_OFF 13 /* 13: Flash Descriptor Override Pin-Strap Status */ |
| #define HSFS_FDOPSS (0x1 << HSFS_FDOPSS_OFF) |
| #define HSFS_FDV_OFF 14 /* 14: Flash Descriptor Valid */ |
| #define HSFS_FDV (0x1 << HSFS_FDV_OFF) |
| #define HSFS_FLOCKDN_OFF 15 /* 15: Flash Configuration Lock-Down */ |
| #define HSFS_FLOCKDN (0x1 << HSFS_FLOCKDN_OFF) |
| |
| #define ICH9_REG_HSFC 0x06 /* 16 Bits Hardware Sequencing Flash Control */ |
| #define HSFC_FGO_OFF 0 /* 0: Flash Cycle Go */ |
| #define HSFC_FGO (0x1 << HSFC_FGO_OFF) |
| #define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */ |
| #define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF) |
| /* 3-7: reserved */ |
| #define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */ |
| #define HSFC_FDBC (0x3f << HSFC_FDBC_OFF) |
| /* 14: reserved */ |
| #define HSFC_SME_OFF 15 /* 15: SPI SMI# Enable */ |
| #define HSFC_SME (0x1 << HSFC_SME_OFF) |
| |
| #define ICH9_REG_FADDR 0x08 /* 32 Bits */ |
| #define ICH9_FADDR_FLA 0x01ffffff |
| #define ICH9_REG_FDATA0 0x10 /* 64 Bytes */ |
| |
| #define ICH9_REG_FRAP 0x50 /* 32 Bytes Flash Region Access Permissions */ |
| #define ICH9_REG_FREG0 0x54 /* 32 Bytes Flash Region 0 */ |
| |
| #define ICH9_REG_PR0 0x74 /* 32 Bytes Protected Range 0 */ |
| #define PR_WP_OFF 31 /* 31: write protection enable */ |
| #define PR_RP_OFF 15 /* 15: read protection enable */ |
| |
| #define ICH9_REG_SSFS 0x90 /* 08 Bits */ |
| #define SSFS_SCIP_OFF 0 /* SPI Cycle In Progress */ |
| #define SSFS_SCIP (0x1 << SSFS_SCIP_OFF) |
| #define SSFS_FDONE_OFF 2 /* Cycle Done Status */ |
| #define SSFS_FDONE (0x1 << SSFS_FDONE_OFF) |
| #define SSFS_FCERR_OFF 3 /* Flash Cycle Error */ |
| #define SSFS_FCERR (0x1 << SSFS_FCERR_OFF) |
| #define SSFS_AEL_OFF 4 /* Access Error Log */ |
| #define SSFS_AEL (0x1 << SSFS_AEL_OFF) |
| /* The following bits are reserved in SSFS: 1,5-7. */ |
| #define SSFS_RESERVED_MASK 0x000000e2 |
| |
| #define ICH9_REG_SSFC 0x91 /* 24 Bits */ |
| /* We combine SSFS and SSFC to one 32-bit word, |
| * therefore SSFC bits are off by 8. */ |
| /* 0: reserved */ |
| #define SSFC_SCGO_OFF (1 + 8) /* 1: SPI Cycle Go */ |
| #define SSFC_SCGO (0x1 << SSFC_SCGO_OFF) |
| #define SSFC_ACS_OFF (2 + 8) /* 2: Atomic Cycle Sequence */ |
| #define SSFC_ACS (0x1 << SSFC_ACS_OFF) |
| #define SSFC_SPOP_OFF (3 + 8) /* 3: Sequence Prefix Opcode Pointer */ |
| #define SSFC_SPOP (0x1 << SSFC_SPOP_OFF) |
| #define SSFC_COP_OFF (4 + 8) /* 4-6: Cycle Opcode Pointer */ |
| #define SSFC_COP (0x7 << SSFC_COP_OFF) |
| /* 7: reserved */ |
| #define SSFC_DBC_OFF (8 + 8) /* 8-13: Data Byte Count */ |
| #define SSFC_DBC (0x3f << SSFC_DBC_OFF) |
| #define SSFC_DS_OFF (14 + 8) /* 14: Data Cycle */ |
| #define SSFC_DS (0x1 << SSFC_DS_OFF) |
| #define SSFC_SME_OFF (15 + 8) /* 15: SPI SMI# Enable */ |
| #define SSFC_SME (0x1 << SSFC_SME_OFF) |
| #define SSFC_SCF_OFF (16 + 8) /* 16-18: SPI Cycle Frequency */ |
| #define SSFC_SCF (0x7 << SSFC_SCF_OFF) |
| #define SSFC_SCF_20MHZ 0x00000000 |
| #define SSFC_SCF_33MHZ 0x01000000 |
| /* 19-23: reserved */ |
| #define SSFC_RESERVED_MASK 0xf8008100 |
| |
| #define ICH9_REG_PREOP 0x94 /* 16 Bits */ |
| #define ICH9_REG_OPTYPE 0x96 /* 16 Bits */ |
| #define ICH9_REG_OPMENU 0x98 /* 64 Bits */ |
| |
| #define ICH9_REG_BBAR 0xA0 /* 32 Bits BIOS Base Address Configuration */ |
| #define BBAR_MASK 0x00ffff00 /* 8-23: Bottom of System Flash */ |
| |
| #define ICH8_REG_VSCC 0xC1 /* 32 Bits Vendor Specific Component Capabilities */ |
| #define ICH9_REG_LVSCC 0xC4 /* 32 Bits Host Lower Vendor Specific Component Capabilities */ |
| #define ICH9_REG_UVSCC 0xC8 /* 32 Bits Host Upper Vendor Specific Component Capabilities */ |
| /* The individual fields of the VSCC registers are defined in the file |
| * ich_descriptors.h. The reason is that the same layout is also used in the |
| * flash descriptor to define the properties of the different flash chips |
| * supported. The BIOS (or the ME?) is responsible to populate the ICH registers |
| * with the information from the descriptor on startup depending on the actual |
| * chip(s) detected. */ |
| |
| #define ICH9_REG_FPB 0xD0 /* 32 Bits Flash Partition Boundary */ |
| #define FPB_FPBA_OFF 0 /* 0-12: Block/Sector Erase Size */ |
| #define FPB_FPBA (0x1FFF << FPB_FPBA_OFF) |
| |
| // ICH9R SPI commands |
| #define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0 |
| #define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1 |
| #define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2 |
| #define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3 |
| |
| // ICH7 registers |
| #define ICH7_REG_SPIS 0x00 /* 16 Bits */ |
| #define SPIS_SCIP 0x0001 |
| #define SPIS_GRANT 0x0002 |
| #define SPIS_CDS 0x0004 |
| #define SPIS_FCERR 0x0008 |
| #define SPIS_RESERVED_MASK 0x7ff0 |
| |
| /* VIA SPI is compatible with ICH7, but maxdata |
| to transfer is 16 bytes. |
| |
| DATA byte count on ICH7 is 8:13, on VIA 8:11 |
| |
| bit 12 is port select CS0 CS1 |
| bit 13 is FAST READ enable |
| bit 7 is used with fast read and one shot controls CS de-assert? |
| */ |
| |
| #define ICH7_REG_SPIC 0x02 /* 16 Bits */ |
| #define SPIC_SCGO 0x0002 |
| #define SPIC_ACS 0x0004 |
| #define SPIC_SPOP 0x0008 |
| #define SPIC_DS 0x4000 |
| |
| #define ICH7_REG_SPIA 0x04 /* 32 Bits */ |
| #define ICH7_REG_SPID0 0x08 /* 64 Bytes */ |
| #define ICH7_REG_PREOP 0x54 /* 16 Bits */ |
| #define ICH7_REG_OPTYPE 0x56 /* 16 Bits */ |
| #define ICH7_REG_OPMENU 0x58 /* 64 Bits */ |
| |
| /* ICH SPI configuration lock-down. May be set during chipset enabling. */ |
| static int ichspi_lock = 0; |
| |
| static enum ich_chipset ich_generation = CHIPSET_ICH_UNKNOWN; |
| uint32_t ichspi_bbar = 0; |
| |
| static void *ich_spibar = NULL; |
| |
| typedef struct _OPCODE { |
| uint8_t opcode; //This commands spi opcode |
| uint8_t spi_type; //This commands spi type |
| uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1 |
| } OPCODE; |
| |
| /* Suggested opcode definition: |
| * Preop 1: Write Enable |
| * Preop 2: Write Status register enable |
| * |
| * OP 0: Write address |
| * OP 1: Read Address |
| * OP 2: ERASE block |
| * OP 3: Read Status register |
| * OP 4: Read ID |
| * OP 5: Write Status register |
| * OP 6: chip private (read JEDEC id) |
| * OP 7: Chip erase |
| */ |
| typedef struct _OPCODES { |
| uint8_t preop[2]; |
| OPCODE opcode[8]; |
| } OPCODES; |
| |
| static OPCODES *curopcodes = NULL; |
| |
| /* HW access functions */ |
| static uint32_t REGREAD32(int X) |
| { |
| return mmio_readl(ich_spibar + X); |
| } |
| |
| static uint16_t REGREAD16(int X) |
| { |
| return mmio_readw(ich_spibar + X); |
| } |
| |
| static uint16_t REGREAD8(int X) |
| { |
| return mmio_readb(ich_spibar + X); |
| } |
| |
| #define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off)) |
| #define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off)) |
| #define REGWRITE8(off, val) mmio_writeb(val, ich_spibar+(off)) |
| |
| /* Common SPI functions */ |
| static int find_opcode(OPCODES *op, uint8_t opcode); |
| static int find_preop(OPCODES *op, uint8_t preop); |
| static int generate_opcodes(OPCODES * op); |
| static int program_opcodes(OPCODES *op, int enable_undo); |
| static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data); |
| |
| /* for pairing opcodes with their required preop */ |
| struct preop_opcode_pair { |
| uint8_t preop; |
| uint8_t opcode; |
| }; |
| |
| /* List of opcodes which need preopcodes and matching preopcodes. Unused. */ |
| const struct preop_opcode_pair pops[] = { |
| {JEDEC_WREN, JEDEC_BYTE_PROGRAM}, |
| {JEDEC_WREN, JEDEC_SE}, /* sector erase */ |
| {JEDEC_WREN, JEDEC_BE_52}, /* block erase */ |
| {JEDEC_WREN, JEDEC_BE_D8}, /* block erase */ |
| {JEDEC_WREN, JEDEC_CE_60}, /* chip erase */ |
| {JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */ |
| /* FIXME: WRSR requires either EWSR or WREN depending on chip type. */ |
| {JEDEC_WREN, JEDEC_WRSR}, |
| {JEDEC_EWSR, JEDEC_WRSR}, |
| {0,} |
| }; |
| |
| /* Reasonable default configuration. Needs ad-hoc modifications if we |
| * encounter unlisted opcodes. Fun. |
| */ |
| static OPCODES O_ST_M25P = { |
| { |
| JEDEC_WREN, |
| JEDEC_EWSR, |
| }, |
| { |
| {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte |
| {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data |
| {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector |
| {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg |
| {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature |
| {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register |
| {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID |
| {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase |
| } |
| }; |
| |
| /* List of opcodes with their corresponding spi_type |
| * It is used to reprogram the chipset OPCODE table on-the-fly if an opcode |
| * is needed which is currently not in the chipset OPCODE table |
| */ |
| static OPCODE POSSIBLE_OPCODES[] = { |
| {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte |
| {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data |
| {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector |
| {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg |
| {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature |
| {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register |
| {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID |
| {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase |
| {JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase |
| {JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase |
| {JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment |
| }; |
| |
| static OPCODES O_EXISTING = {}; |
| |
| /* pretty printing functions */ |
| static void prettyprint_opcodes(OPCODES *ops) |
| { |
| OPCODE oc; |
| const char *t; |
| const char *a; |
| uint8_t i; |
| static const char *const spi_type[4] = { |
| "read w/o addr", |
| "write w/o addr", |
| "read w/ addr", |
| "write w/ addr" |
| }; |
| static const char *const atomic_type[3] = { |
| "none", |
| " 0 ", |
| " 1 " |
| }; |
| |
| if (ops == NULL) |
| return; |
| |
| msg_pdbg2(" OP Type Pre-OP\n"); |
| for (i = 0; i < 8; i++) { |
| oc = ops->opcode[i]; |
| t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type]; |
| a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic]; |
| msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a); |
| } |
| msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0], |
| ops->preop[1]); |
| } |
| |
| #define _pprint_reg(bit, mask, off, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & mask) >> off) |
| #define pprint_reg(reg, bit, val, sep) _pprint_reg(bit, reg##_##bit, reg##_##bit##_OFF, val, sep) |
| |
| static void prettyprint_ich9_reg_hsfs(uint16_t reg_val) |
| { |
| msg_pdbg("HSFS: "); |
| pprint_reg(HSFS, FDONE, reg_val, ", "); |
| pprint_reg(HSFS, FCERR, reg_val, ", "); |
| pprint_reg(HSFS, AEL, reg_val, ", "); |
| if (ich_generation != CHIPSET_100_SERIES_SUNRISE_POINT && |
| ich_generation != CHIPSET_C620_SERIES_LEWISBURG) { |
| pprint_reg(HSFS, BERASE, reg_val, ", "); |
| } |
| pprint_reg(HSFS, SCIP, reg_val, ", "); |
| if (ich_generation == CHIPSET_100_SERIES_SUNRISE_POINT || |
| ich_generation == CHIPSET_C620_SERIES_LEWISBURG) { |
| pprint_reg(HSFS, PRR34_LOCKDN, reg_val, ", "); |
| pprint_reg(HSFS, WRSDIS, reg_val, ", "); |
| } |
| pprint_reg(HSFS, FDOPSS, reg_val, ", "); |
| pprint_reg(HSFS, FDV, reg_val, ", "); |
| pprint_reg(HSFS, FLOCKDN, reg_val, "\n"); |
| } |
| |
| static void prettyprint_ich9_reg_hsfc(uint16_t reg_val) |
| { |
| msg_pdbg("HSFC: "); |
| pprint_reg(HSFC, FGO, reg_val, ", "); |
| if (ich_generation != CHIPSET_100_SERIES_SUNRISE_POINT && |
| ich_generation != CHIPSET_C620_SERIES_LEWISBURG) { |
| pprint_reg(HSFC, FCYCLE, reg_val, ", "); |
| } else { |
| _pprint_reg(HSFC, PCH100_HSFC_FCYCLE, PCH100_HSFC_FCYCLE_OFF, reg_val, ", "); |
| pprint_reg(HSFC, WET, reg_val, ", "); |
| } |
| pprint_reg(HSFC, FDBC, reg_val, ", "); |
| pprint_reg(HSFC, SME, reg_val, "\n"); |
| } |
| |
| static void prettyprint_ich9_reg_ssfs(uint32_t reg_val) |
| { |
| msg_pdbg("SSFS: "); |
| pprint_reg(SSFS, SCIP, reg_val, ", "); |
| pprint_reg(SSFS, FDONE, reg_val, ", "); |
| pprint_reg(SSFS, FCERR, reg_val, ", "); |
| pprint_reg(SSFS, AEL, reg_val, "\n"); |
| } |
| |
| static void prettyprint_ich9_reg_ssfc(uint32_t reg_val) |
| { |
| msg_pdbg("SSFC: "); |
| pprint_reg(SSFC, SCGO, reg_val, ", "); |
| pprint_reg(SSFC, ACS, reg_val, ", "); |
| pprint_reg(SSFC, SPOP, reg_val, ", "); |
| pprint_reg(SSFC, COP, reg_val, ", "); |
| pprint_reg(SSFC, DBC, reg_val, ", "); |
| pprint_reg(SSFC, SME, reg_val, ", "); |
| pprint_reg(SSFC, SCF, reg_val, "\n"); |
| } |
| |
| static void prettyprint_pch100_reg_dlock(const uint32_t reg_val) |
| { |
| msg_pdbg("DLOCK: "); |
| pprint_reg(DLOCK, BMWAG_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, BMRAG_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, SBMWAG_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, SBMRAG_LOCKDN, reg_val, ",\n "); |
| pprint_reg(DLOCK, PR0_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, PR1_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, PR2_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, PR3_LOCKDN, reg_val, ", "); |
| pprint_reg(DLOCK, PR4_LOCKDN, reg_val, ",\n "); |
| pprint_reg(DLOCK, SSEQ_LOCKDN, reg_val, "\n"); |
| } |
| |
| static struct { |
| size_t reg_ssfsc; |
| size_t reg_preop; |
| size_t reg_optype; |
| size_t reg_opmenu; |
| } swseq_data; |
| |
| static uint8_t lookup_spi_type(uint8_t opcode) |
| { |
| int a; |
| |
| for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) { |
| if (POSSIBLE_OPCODES[a].opcode == opcode) |
| return POSSIBLE_OPCODES[a].spi_type; |
| } |
| |
| return 0xFF; |
| } |
| |
| static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt) |
| { |
| uint8_t spi_type; |
| |
| spi_type = lookup_spi_type(opcode); |
| if (spi_type > 3) { |
| /* Try to guess spi type from read/write sizes. |
| * The following valid writecnt/readcnt combinations exist: |
| * writecnt = 4, readcnt >= 0 |
| * writecnt = 1, readcnt >= 0 |
| * writecnt >= 4, readcnt = 0 |
| * writecnt >= 1, readcnt = 0 |
| * writecnt >= 1 is guaranteed for all commands. |
| */ |
| if (readcnt == 0) |
| /* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS |
| * or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data |
| * bytes are actual the address, they go to the bus anyhow |
| */ |
| spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; |
| else if (writecnt == 1) // and readcnt is > 0 |
| spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; |
| else if (writecnt == 4) // and readcnt is > 0 |
| spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; |
| else // we have an invalid case |
| return SPI_INVALID_LENGTH; |
| } |
| int oppos = 2; // use original JEDEC_BE_D8 offset |
| curopcodes->opcode[oppos].opcode = opcode; |
| curopcodes->opcode[oppos].spi_type = spi_type; |
| program_opcodes(curopcodes, 0); |
| oppos = find_opcode(curopcodes, opcode); |
| msg_pdbg2("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos); |
| return oppos; |
| } |
| |
| static int find_opcode(OPCODES *op, uint8_t opcode) |
| { |
| int a; |
| |
| if (op == NULL) { |
| msg_perr("\n%s: null OPCODES pointer!\n", __func__); |
| return -1; |
| } |
| |
| for (a = 0; a < 8; a++) { |
| if (op->opcode[a].opcode == opcode) |
| return a; |
| } |
| |
| return -1; |
| } |
| |
| static int find_preop(OPCODES *op, uint8_t preop) |
| { |
| int a; |
| |
| if (op == NULL) { |
| msg_perr("\n%s: null OPCODES pointer!\n", __func__); |
| return -1; |
| } |
| |
| for (a = 0; a < 2; a++) { |
| if (op->preop[a] == preop) |
| return a; |
| } |
| |
| return -1; |
| } |
| |
| /* Create a struct OPCODES based on what we find in the locked down chipset. */ |
| static int generate_opcodes(OPCODES * op) |
| { |
| int a; |
| uint16_t preop, optype; |
| uint32_t opmenu[2]; |
| |
| if (op == NULL) { |
| msg_perr("\n%s: null OPCODES pointer!\n", __func__); |
| return -1; |
| } |
| |
| switch (ich_generation) { |
| case CHIPSET_ICH7: |
| case CHIPSET_TUNNEL_CREEK: |
| case CHIPSET_CENTERTON: |
| preop = REGREAD16(ICH7_REG_PREOP); |
| optype = REGREAD16(ICH7_REG_OPTYPE); |
| opmenu[0] = REGREAD32(ICH7_REG_OPMENU); |
| opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4); |
| break; |
| case CHIPSET_ICH8: |
| default: /* Future version might behave the same */ |
| preop = REGREAD16(swseq_data.reg_preop); |
| optype = REGREAD16(swseq_data.reg_optype); |
| opmenu[0] = REGREAD32(swseq_data.reg_opmenu); |
| opmenu[1] = REGREAD32(swseq_data.reg_opmenu + 4); |
| break; |
| } |
| |
| op->preop[0] = (uint8_t) preop; |
| op->preop[1] = (uint8_t) (preop >> 8); |
| |
| for (a = 0; a < 8; a++) { |
| op->opcode[a].spi_type = (uint8_t) (optype & 0x3); |
| optype >>= 2; |
| } |
| |
| for (a = 0; a < 4; a++) { |
| op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff); |
| opmenu[0] >>= 8; |
| } |
| |
| for (a = 4; a < 8; a++) { |
| op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff); |
| opmenu[1] >>= 8; |
| } |
| |
| /* No preopcodes used by default. */ |
| for (a = 0; a < 8; a++) |
| op->opcode[a].atomic = 0; |
| |
| return 0; |
| } |
| |
| static int program_opcodes(OPCODES *op, int enable_undo) |
| { |
| uint8_t a; |
| uint16_t preop, optype; |
| uint32_t opmenu[2]; |
| |
| /* Program Prefix Opcodes */ |
| /* 0:7 Prefix Opcode 1 */ |
| preop = (op->preop[0]); |
| /* 8:16 Prefix Opcode 2 */ |
| preop |= ((uint16_t) op->preop[1]) << 8; |
| |
| /* Program Opcode Types 0 - 7 */ |
| optype = 0; |
| for (a = 0; a < 8; a++) { |
| optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2); |
| } |
| |
| /* Program Allowable Opcodes 0 - 3 */ |
| opmenu[0] = 0; |
| for (a = 0; a < 4; a++) { |
| opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8); |
| } |
| |
| /* Program Allowable Opcodes 4 - 7 */ |
| opmenu[1] = 0; |
| for (a = 4; a < 8; a++) { |
| opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8); |
| } |
| |
| msg_pdbg2("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]); |
| switch (ich_generation) { |
| case CHIPSET_ICH7: |
| case CHIPSET_TUNNEL_CREEK: |
| case CHIPSET_CENTERTON: |
| /* Register undo only for enable_undo=1, i.e. first call. */ |
| if (enable_undo) { |
| rmmio_valw(ich_spibar + ICH7_REG_PREOP); |
| rmmio_valw(ich_spibar + ICH7_REG_OPTYPE); |
| rmmio_vall(ich_spibar + ICH7_REG_OPMENU); |
| rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4); |
| } |
| mmio_writew(preop, ich_spibar + ICH7_REG_PREOP); |
| mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE); |
| mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU); |
| mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4); |
| break; |
| case CHIPSET_ICH8: |
| default: /* Future version might behave the same */ |
| /* Register undo only for enable_undo=1, i.e. first call. */ |
| if (enable_undo) { |
| rmmio_valw(ich_spibar + swseq_data.reg_preop); |
| rmmio_valw(ich_spibar + swseq_data.reg_optype); |
| rmmio_vall(ich_spibar + swseq_data.reg_opmenu); |
| rmmio_vall(ich_spibar + swseq_data.reg_opmenu + 4); |
| } |
| mmio_writew(preop, ich_spibar + swseq_data.reg_preop); |
| mmio_writew(optype, ich_spibar + swseq_data.reg_optype); |
| mmio_writel(opmenu[0], ich_spibar + swseq_data.reg_opmenu); |
| mmio_writel(opmenu[1], ich_spibar + swseq_data.reg_opmenu + 4); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns -1 if at least one mandatory opcode is inaccessible, 0 otherwise. |
| * FIXME: this should also check for |
| * - at least one probing opcode (RDID (incl. AT25F variants?), REMS, RES?) |
| * - at least one erasing opcode (lots.) |
| * - at least one program opcode (BYTE_PROGRAM, AAI_WORD_PROGRAM, ...?) |
| * - necessary preops? (EWSR, WREN, ...?) |
| */ |
| static int ich_missing_opcodes() |
| { |
| uint8_t ops[] = { |
| JEDEC_READ, |
| JEDEC_RDSR, |
| 0 |
| }; |
| int i = 0; |
| while (ops[i] != 0) { |
| msg_pspew("checking for opcode 0x%02x\n", ops[i]); |
| if (find_opcode(curopcodes, ops[i]) == -1) |
| return -1; |
| i++; |
| } |
| return 0; |
| } |
| |
| /* |
| * Try to set BBAR (BIOS Base Address Register), but read back the value in case |
| * it didn't stick. |
| */ |
| static void ich_set_bbar(uint32_t min_addr) |
| { |
| int bbar_off; |
| switch (ich_generation) { |
| case CHIPSET_ICH7: |
| case CHIPSET_TUNNEL_CREEK: |
| case CHIPSET_CENTERTON: |
| bbar_off = 0x50; |
| break; |
| case CHIPSET_ICH8: |
| case CHIPSET_BAYTRAIL: |
| msg_pdbg("BBAR offset is unknown!\n"); |
| return; |
| case CHIPSET_ICH9: |
| default: /* Future version might behave the same */ |
| bbar_off = ICH9_REG_BBAR; |
| break; |
| } |
| |
| ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK; |
| if (ichspi_bbar) { |
| msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n", |
| ichspi_bbar); |
| } |
| min_addr &= BBAR_MASK; |
| ichspi_bbar |= min_addr; |
| rmmio_writel(ichspi_bbar, ich_spibar + bbar_off); |
| ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK; |
| |
| /* We don't have any option except complaining. And if the write |
| * failed, the restore will fail as well, so no problem there. |
| */ |
| if (ichspi_bbar != min_addr) |
| msg_perr("Setting BBAR to 0x%08x failed! New value: 0x%08x.\n", |
| min_addr, ichspi_bbar); |
| } |
| |
| /* Read len bytes from the fdata/spid register into the data array. |
| * |
| * Note that using len > flash->mst->spi.max_data_read will return garbage or |
| * may even crash. |
| */ |
| static void ich_read_data(uint8_t *data, int len, int reg0_off) |
| { |
| int i; |
| uint32_t temp32 = 0; |
| |
| for (i = 0; i < len; i++) { |
| if ((i % 4) == 0) |
| temp32 = REGREAD32(reg0_off + i); |
| |
| data[i] = (temp32 >> ((i % 4) * 8)) & 0xff; |
| } |
| } |
| |
| /* Fill len bytes from the data array into the fdata/spid registers. |
| * |
| * Note that using len > flash->mst->spi.max_data_write will trash the registers |
| * following the data registers. |
| */ |
| static void ich_fill_data(const uint8_t *data, int len, int reg0_off) |
| { |
| uint32_t temp32 = 0; |
| int i; |
| |
| if (len <= 0) |
| return; |
| |
| for (i = 0; i < len; i++) { |
| if ((i % 4) == 0) |
| temp32 = 0; |
| |
| temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8); |
| |
| if ((i % 4) == 3) /* 32 bits are full, write them to regs. */ |
| REGWRITE32(reg0_off + (i - (i % 4)), temp32); |
| } |
| i--; |
| if ((i % 4) != 3) /* Write remaining data to regs. */ |
| REGWRITE32(reg0_off + (i - (i % 4)), temp32); |
| } |
| |
| /* This function generates OPCODES from or programs OPCODES to ICH according to |
| * the chipset's SPI configuration lock. |
| * |
| * It should be called before ICH sends any spi command. |
| */ |
| static int ich_init_opcodes(void) |
| { |
| int rc = 0; |
| OPCODES *curopcodes_done; |
| |
| if (curopcodes) |
| return 0; |
| |
| if (ichspi_lock) { |
| msg_pdbg("Reading OPCODES... "); |
| curopcodes_done = &O_EXISTING; |
| rc = generate_opcodes(curopcodes_done); |
| } else { |
| msg_pdbg("Programming OPCODES... "); |
| curopcodes_done = &O_ST_M25P; |
| rc = program_opcodes(curopcodes_done, 1); |
| } |
| |
| if (rc) { |
| curopcodes = NULL; |
| msg_perr("failed\n"); |
| return 1; |
| } else { |
| curopcodes = curopcodes_done; |
| msg_pdbg("done\n"); |
| prettyprint_opcodes(curopcodes); |
| return 0; |
| } |
| } |
| |
| static int ich7_run_opcode(OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data, int maxdata) |
| { |
| int write_cmd = 0; |
| int timeout; |
| uint32_t temp32; |
| uint16_t temp16; |
| uint64_t opmenu; |
| int opcode_index; |
| |
| /* Is it a write command? */ |
| if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) |
| || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) { |
| write_cmd = 1; |
| } |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("Error: SCIP never cleared!\n"); |
| return 1; |
| } |
| |
| /* Program offset in flash into SPIA while preserving reserved bits. */ |
| temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF; |
| REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32); |
| |
| /* Program data into SPID0 to N */ |
| if (write_cmd && (datalength != 0)) |
| ich_fill_data(data, datalength, ICH7_REG_SPID0); |
| |
| /* Assemble SPIS */ |
| temp16 = REGREAD16(ICH7_REG_SPIS); |
| /* keep reserved bits */ |
| temp16 &= SPIS_RESERVED_MASK; |
| /* clear error status registers */ |
| temp16 |= (SPIS_CDS | SPIS_FCERR); |
| REGWRITE16(ICH7_REG_SPIS, temp16); |
| |
| /* Assemble SPIC */ |
| temp16 = 0; |
| |
| if (datalength != 0) { |
| temp16 |= SPIC_DS; |
| temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8; |
| } |
| |
| /* Select opcode */ |
| opmenu = REGREAD32(ICH7_REG_OPMENU); |
| opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32; |
| |
| for (opcode_index = 0; opcode_index < 8; opcode_index++) { |
| if ((opmenu & 0xff) == op.opcode) { |
| break; |
| } |
| opmenu >>= 8; |
| } |
| if (opcode_index == 8) { |
| msg_pdbg("Opcode %x not found.\n", op.opcode); |
| return 1; |
| } |
| temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4; |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| /* Handle Atomic. Atomic commands include three steps: |
| - sending the preop (mainly EWSR or WREN) |
| - sending the main command |
| - waiting for the busy bit (WIP) to be cleared |
| This means the timeout must be sufficient for chip erase |
| of slow high-capacity chips. |
| */ |
| switch (op.atomic) { |
| case 2: |
| /* Select second preop. */ |
| temp16 |= SPIC_SPOP; |
| /* And fall through. */ |
| case 1: |
| /* Atomic command (preop+op) */ |
| temp16 |= SPIC_ACS; |
| timeout = 100 * 1000 * 60; /* 60 seconds */ |
| break; |
| } |
| |
| /* Start */ |
| temp16 |= SPIC_SCGO; |
| |
| /* write it */ |
| REGWRITE16(ICH7_REG_SPIC, temp16); |
| |
| /* Wait for Cycle Done Status or Flash Cycle Error. */ |
| while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) && |
| --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n", |
| REGREAD16(ICH7_REG_SPIS)); |
| return 1; |
| } |
| |
| /* FIXME: make sure we do not needlessly cause transaction errors. */ |
| temp16 = REGREAD16(ICH7_REG_SPIS); |
| if (temp16 & SPIS_FCERR) { |
| msg_perr("Transaction error!\n"); |
| /* keep reserved bits */ |
| temp16 &= SPIS_RESERVED_MASK; |
| REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR); |
| return 1; |
| } |
| |
| if ((!write_cmd) && (datalength != 0)) |
| ich_read_data(data, datalength, ICH7_REG_SPID0); |
| |
| return 0; |
| } |
| |
| static int ich9_run_opcode(OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data) |
| { |
| int write_cmd = 0; |
| int timeout; |
| uint32_t temp32; |
| uint64_t opmenu; |
| int opcode_index; |
| |
| /* Is it a write command? */ |
| if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) |
| || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) { |
| write_cmd = 1; |
| } |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| while ((REGREAD8(swseq_data.reg_ssfsc) & SSFS_SCIP) && --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("Error: SCIP never cleared!\n"); |
| return 1; |
| } |
| |
| /* Program offset in flash into FADDR while preserve the reserved bits |
| * and clearing the 25. address bit which is only useable in hwseq. */ |
| temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF; |
| REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32); |
| |
| /* Program data into FDATA0 to N */ |
| if (write_cmd && (datalength != 0)) |
| ich_fill_data(data, datalength, ICH9_REG_FDATA0); |
| |
| /* Assemble SSFS + SSFC */ |
| temp32 = REGREAD32(swseq_data.reg_ssfsc); |
| /* Keep reserved bits only */ |
| temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK; |
| /* Clear cycle done and cycle error status registers */ |
| temp32 |= (SSFS_FDONE | SSFS_FCERR); |
| REGWRITE32(swseq_data.reg_ssfsc, temp32); |
| |
| /* Use 20 MHz */ |
| temp32 |= SSFC_SCF_20MHZ; |
| |
| /* Set data byte count (DBC) and data cycle bit (DS) */ |
| if (datalength != 0) { |
| uint32_t datatemp; |
| temp32 |= SSFC_DS; |
| datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) & |
| SSFC_DBC); |
| temp32 |= datatemp; |
| } |
| |
| /* Select opcode */ |
| opmenu = REGREAD32(swseq_data.reg_opmenu); |
| opmenu |= ((uint64_t)REGREAD32(swseq_data.reg_opmenu + 4)) << 32; |
| |
| for (opcode_index = 0; opcode_index < 8; opcode_index++) { |
| if ((opmenu & 0xff) == op.opcode) { |
| break; |
| } |
| opmenu >>= 8; |
| } |
| if (opcode_index == 8) { |
| msg_pdbg("Opcode %x not found.\n", op.opcode); |
| return 1; |
| } |
| temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4); |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| /* Handle Atomic. Atomic commands include three steps: |
| - sending the preop (mainly EWSR or WREN) |
| - sending the main command |
| - waiting for the busy bit (WIP) to be cleared |
| This means the timeout must be sufficient for chip erase |
| of slow high-capacity chips. |
| */ |
| switch (op.atomic) { |
| case 2: |
| /* Select second preop. */ |
| temp32 |= SSFC_SPOP; |
| /* And fall through. */ |
| case 1: |
| /* Atomic command (preop+op) */ |
| temp32 |= SSFC_ACS; |
| timeout = 100 * 1000 * 60; /* 60 seconds */ |
| break; |
| } |
| |
| /* Start */ |
| temp32 |= SSFC_SCGO; |
| |
| /* write it */ |
| REGWRITE32(swseq_data.reg_ssfsc, temp32); |
| |
| /* Wait for Cycle Done Status or Flash Cycle Error. */ |
| while (((REGREAD32(swseq_data.reg_ssfsc) & (SSFS_FDONE | SSFS_FCERR)) == 0) && |
| --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("timeout, REG_SSFS=0x%08x\n", |
| REGREAD32(swseq_data.reg_ssfsc)); |
| return 1; |
| } |
| |
| /* FIXME make sure we do not needlessly cause transaction errors. */ |
| temp32 = REGREAD32(swseq_data.reg_ssfsc); |
| if (temp32 & SSFS_FCERR) { |
| msg_perr("Transaction error!\n"); |
| prettyprint_ich9_reg_ssfs(temp32); |
| prettyprint_ich9_reg_ssfc(temp32); |
| /* keep reserved bits */ |
| temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK; |
| /* Clear the transaction error. */ |
| REGWRITE32(swseq_data.reg_ssfsc, temp32 | SSFS_FCERR); |
| return 1; |
| } |
| |
| if ((!write_cmd) && (datalength != 0)) |
| ich_read_data(data, datalength, ICH9_REG_FDATA0); |
| |
| return 0; |
| } |
| |
| static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data) |
| { |
| /* max_data_read == max_data_write for all Intel/VIA SPI masters */ |
| uint8_t maxlength = flash->mst->spi.max_data_read; |
| |
| if (ich_generation == CHIPSET_ICH_UNKNOWN) { |
| msg_perr("%s: unsupported chipset\n", __func__); |
| return -1; |
| } |
| |
| if (datalength > maxlength) { |
| msg_perr("%s: Internal command size error for " |
| "opcode 0x%02x, got datalength=%i, want <=%i\n", |
| __func__, op.opcode, datalength, maxlength); |
| return SPI_INVALID_LENGTH; |
| } |
| |
| switch (ich_generation) { |
| case CHIPSET_ICH7: |
| case CHIPSET_TUNNEL_CREEK: |
| case CHIPSET_CENTERTON: |
| return ich7_run_opcode(op, offset, datalength, data, maxlength); |
| case CHIPSET_ICH8: |
| default: /* Future version might behave the same */ |
| return ich9_run_opcode(op, offset, datalength, data); |
| } |
| } |
| |
| static int ich_spi_send_command(struct flashctx *flash, unsigned int writecnt, |
| unsigned int readcnt, |
| const unsigned char *writearr, |
| unsigned char *readarr) |
| { |
| int result; |
| int opcode_index = -1; |
| const unsigned char cmd = *writearr; |
| OPCODE *opcode; |
| uint32_t addr = 0; |
| uint8_t *data; |
| int count; |
| |
| /* find cmd in opcodes-table */ |
| opcode_index = find_opcode(curopcodes, cmd); |
| if (opcode_index == -1) { |
| if (!ichspi_lock) |
| opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt); |
| if (opcode_index == SPI_INVALID_LENGTH) { |
| msg_pdbg("OPCODE 0x%02x has unsupported length, will not execute.\n", cmd); |
| return SPI_INVALID_LENGTH; |
| } else if (opcode_index == -1) { |
| msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n", |
| cmd); |
| return SPI_INVALID_OPCODE; |
| } |
| } |
| |
| opcode = &(curopcodes->opcode[opcode_index]); |
| |
| /* The following valid writecnt/readcnt combinations exist: |
| * writecnt = 4, readcnt >= 0 |
| * writecnt = 1, readcnt >= 0 |
| * writecnt >= 4, readcnt = 0 |
| * writecnt >= 1, readcnt = 0 |
| * writecnt >= 1 is guaranteed for all commands. |
| */ |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) && |
| (writecnt != 4)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got writecnt=%i, want =4\n", __func__, cmd, |
| writecnt); |
| return SPI_INVALID_LENGTH; |
| } |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) && |
| (writecnt != 1)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got writecnt=%i, want =1\n", __func__, cmd, |
| writecnt); |
| return SPI_INVALID_LENGTH; |
| } |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) && |
| (writecnt < 4)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got writecnt=%i, want >=4\n", __func__, cmd, |
| writecnt); |
| return SPI_INVALID_LENGTH; |
| } |
| if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) || |
| (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) && |
| (readcnt)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got readcnt=%i, want =0\n", __func__, cmd, |
| readcnt); |
| return SPI_INVALID_LENGTH; |
| } |
| |
| /* if opcode-type requires an address */ |
| if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS || |
| opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) { |
| addr = (writearr[1] << 16) | |
| (writearr[2] << 8) | (writearr[3] << 0); |
| if (addr < ichspi_bbar) { |
| msg_perr("%s: Address 0x%06x below allowed " |
| "range 0x%06x-0xffffff\n", __func__, |
| addr, ichspi_bbar); |
| return SPI_INVALID_ADDRESS; |
| } |
| } |
| |
| /* Translate read/write array/count. |
| * The maximum data length is identical for the maximum read length and |
| * for the maximum write length excluding opcode and address. Opcode and |
| * address are stored in separate registers, not in the data registers |
| * and are thus not counted towards data length. The only exception |
| * applies if the opcode definition (un)intentionally classifies said |
| * opcode incorrectly as non-address opcode or vice versa. */ |
| if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) { |
| data = (uint8_t *) (writearr + 1); |
| count = writecnt - 1; |
| } else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) { |
| data = (uint8_t *) (writearr + 4); |
| count = writecnt - 4; |
| } else { |
| data = (uint8_t *) readarr; |
| count = readcnt; |
| } |
| |
| result = run_opcode(flash, *opcode, addr, count, data); |
| if (result) { |
| msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode); |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) || |
| (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) { |
| msg_pdbg("at address 0x%06x ", addr); |
| } |
| msg_pdbg("(payload length was %d).\n", count); |
| |
| /* Print out the data array if it contains data to write. |
| * Errors are detected before the received data is read back into |
| * the array so it won't make sense to print it then. */ |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) || |
| (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) { |
| int i; |
| msg_pspew("The data was:\n"); |
| for (i = 0; i < count; i++){ |
| msg_pspew("%3d: 0x%02x\n", i, data[i]); |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static struct hwseq_data { |
| uint32_t size_comp0; |
| uint32_t size_comp1; |
| uint32_t addr_mask; |
| bool only_4k; |
| uint32_t hsfc_fcycle; |
| } hwseq_data; |
| |
| /* Sets FLA in FADDR to (addr & hwseq_data.addr_mask) without touching other bits. */ |
| static void ich_hwseq_set_addr(uint32_t addr) |
| { |
| uint32_t addr_old = REGREAD32(ICH9_REG_FADDR) & ~hwseq_data.addr_mask; |
| REGWRITE32(ICH9_REG_FADDR, (addr & hwseq_data.addr_mask) | addr_old); |
| } |
| |
| /* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes |
| * of the block containing this address. May return nonsense if the address is |
| * not valid. The erase block size for a specific address depends on the flash |
| * partition layout as specified by FPB and the partition properties as defined |
| * by UVSCC and LVSCC respectively. An alternative to implement this method |
| * would be by querying FPB and the respective VSCC register directly. |
| */ |
| static uint32_t ich_hwseq_get_erase_block_size(unsigned int addr) |
| { |
| if (hwseq_data.only_4k) { |
| return 4 * 1024; |
| } else { |
| uint8_t enc_berase; |
| static const uint32_t dec_berase[4] = { |
| 256, |
| 4 * 1024, |
| 8 * 1024, |
| 64 * 1024 |
| }; |
| |
| ich_hwseq_set_addr(addr); |
| enc_berase = (REGREAD16(ICH9_REG_HSFS) & HSFS_BERASE) >> HSFS_BERASE_OFF; |
| return dec_berase[enc_berase]; |
| } |
| } |
| |
| /* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals. |
| Resets all error flags in HSFS. |
| Returns 0 if the cycle completes successfully without errors within |
| timeout us, 1 on errors. */ |
| static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout, |
| unsigned int len) |
| { |
| uint16_t hsfs; |
| uint32_t addr; |
| |
| timeout /= 8; /* scale timeout duration to counter */ |
| while ((((hsfs = REGREAD16(ICH9_REG_HSFS)) & |
| (HSFS_FDONE | HSFS_FCERR)) == 0) && |
| --timeout) { |
| programmer_delay(8); |
| } |
| REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS)); |
| if (!timeout) { |
| addr = REGREAD32(ICH9_REG_FADDR) & hwseq_data.addr_mask; |
| msg_perr("Timeout error between offset 0x%08x and " |
| "0x%08x (= 0x%08x + %d)!\n", |
| addr, addr + len - 1, addr, len - 1); |
| prettyprint_ich9_reg_hsfs(hsfs); |
| prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC)); |
| return 1; |
| } |
| |
| if (hsfs & HSFS_FCERR) { |
| addr = REGREAD32(ICH9_REG_FADDR) & hwseq_data.addr_mask; |
| msg_perr("Transaction error between offset 0x%08x and " |
| "0x%08x (= 0x%08x + %d)!\n", |
| addr, addr + len - 1, addr, len - 1); |
| prettyprint_ich9_reg_hsfs(hsfs); |
| prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int ich_hwseq_probe(struct flashctx *flash) |
| { |
| uint32_t total_size, boundary; |
| uint32_t erase_size_low, size_low, erase_size_high, size_high; |
| struct block_eraser *eraser; |
| |
| total_size = hwseq_data.size_comp0 + hwseq_data.size_comp1; |
| msg_cdbg("Hardware sequencing reports %d attached SPI flash chip", |
| (hwseq_data.size_comp1 != 0) ? 2 : 1); |
| if (hwseq_data.size_comp1 != 0) |
| msg_cdbg("s with a combined"); |
| else |
| msg_cdbg(" with a"); |
| msg_cdbg(" density of %d kB.\n", total_size / 1024); |
| flash->chip->total_size = total_size / 1024; |
| |
| eraser = &(flash->chip->block_erasers[0]); |
| if (!hwseq_data.only_4k) |
| boundary = (REGREAD32(ICH9_REG_FPB) & FPB_FPBA) << 12; |
| else |
| boundary = 0; |
| size_high = total_size - boundary; |
| erase_size_high = ich_hwseq_get_erase_block_size(boundary); |
| |
| if (boundary == 0) { |
| msg_cdbg2("There is only one partition containing the whole " |
| "address space (0x%06x - 0x%06x).\n", 0, size_high-1); |
| eraser->eraseblocks[0].size = erase_size_high; |
| eraser->eraseblocks[0].count = size_high / erase_size_high; |
| msg_cdbg2("There are %d erase blocks with %d B each.\n", |
| size_high / erase_size_high, erase_size_high); |
| } else { |
| msg_cdbg2("The flash address space (0x%06x - 0x%06x) is divided " |
| "at address 0x%06x in two partitions.\n", |
| 0, total_size-1, boundary); |
| size_low = total_size - size_high; |
| erase_size_low = ich_hwseq_get_erase_block_size(0); |
| |
| eraser->eraseblocks[0].size = erase_size_low; |
| eraser->eraseblocks[0].count = size_low / erase_size_low; |
| msg_cdbg("The first partition ranges from 0x%06x to 0x%06x.\n", |
| 0, size_low-1); |
| msg_cdbg("In that range are %d erase blocks with %d B each.\n", |
| size_low / erase_size_low, erase_size_low); |
| |
| eraser->eraseblocks[1].size = erase_size_high; |
| eraser->eraseblocks[1].count = size_high / erase_size_high; |
| msg_cdbg("The second partition ranges from 0x%06x to 0x%06x.\n", |
| boundary, total_size-1); |
| msg_cdbg("In that range are %d erase blocks with %d B each.\n", |
| size_high / erase_size_high, erase_size_high); |
| } |
| flash->chip->tested = TEST_OK_PREW; |
| return 1; |
| } |
| |
| static int ich_hwseq_block_erase(struct flashctx *flash, unsigned int addr, |
| unsigned int len) |
| { |
| uint32_t erase_block; |
| uint16_t hsfc; |
| uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */ |
| |
| erase_block = ich_hwseq_get_erase_block_size(addr); |
| if (len != erase_block) { |
| msg_cerr("Erase block size for address 0x%06x is %d B, " |
| "but requested erase block size is %d B. " |
| "Not erasing anything.\n", addr, erase_block, len); |
| return -1; |
| } |
| |
| /* Although the hardware supports this (it would erase the whole block |
| * containing the address) we play safe here. */ |
| if (addr % erase_block != 0) { |
| msg_cerr("Erase address 0x%06x is not aligned to the erase " |
| "block boundary (any multiple of %d). " |
| "Not erasing anything.\n", addr, erase_block); |
| return -1; |
| } |
| |
| if (addr + len > flash->chip->total_size * 1024) { |
| msg_perr("Request to erase some inaccessible memory address(es)" |
| " (addr=0x%x, len=%d). " |
| "Not erasing anything.\n", addr, len); |
| return -1; |
| } |
| |
| msg_pdbg("Erasing %d bytes starting at 0x%06x.\n", len, addr); |
| ich_hwseq_set_addr(addr); |
| |
| /* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */ |
| REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS)); |
| |
| hsfc = REGREAD16(ICH9_REG_HSFC); |
| hsfc &= ~hwseq_data.hsfc_fcycle; /* clear operation */ |
| hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */ |
| hsfc |= HSFC_FGO; /* start */ |
| msg_pdbg("HSFC used for block erasing: "); |
| prettyprint_ich9_reg_hsfc(hsfc); |
| REGWRITE16(ICH9_REG_HSFC, hsfc); |
| |
| if (ich_hwseq_wait_for_cycle_complete(timeout, len)) |
| return -1; |
| return 0; |
| } |
| |
| static int ich_hwseq_read(struct flashctx *flash, uint8_t *buf, |
| unsigned int addr, unsigned int len) |
| { |
| uint16_t hsfc; |
| uint16_t timeout = 100 * 60; |
| uint8_t block_len; |
| |
| if (addr + len > flash->chip->total_size * 1024) { |
| msg_perr("Request to read from an inaccessible memory address " |
| "(addr=0x%x, len=%d).\n", addr, len); |
| return -1; |
| } |
| |
| msg_pdbg("Reading %d bytes starting at 0x%06x.\n", len, addr); |
| /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ |
| REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS)); |
| |
| while (len > 0) { |
| /* Obey programmer limit... */ |
| block_len = min(len, flash->mst->opaque.max_data_read); |
| /* as well as flash chip page borders as demanded in the Intel datasheets. */ |
| block_len = min(block_len, 256 - (addr & 0xFF)); |
| |
| ich_hwseq_set_addr(addr); |
| hsfc = REGREAD16(ICH9_REG_HSFC); |
| hsfc &= ~hwseq_data.hsfc_fcycle; /* set read operation */ |
| hsfc &= ~HSFC_FDBC; /* clear byte count */ |
| /* set byte count */ |
| hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); |
| hsfc |= HSFC_FGO; /* start */ |
| REGWRITE16(ICH9_REG_HSFC, hsfc); |
| |
| if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) |
| return 1; |
| ich_read_data(buf, block_len, ICH9_REG_FDATA0); |
| addr += block_len; |
| buf += block_len; |
| len -= block_len; |
| } |
| return 0; |
| } |
| |
| static int ich_hwseq_write(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len) |
| { |
| uint16_t hsfc; |
| uint16_t timeout = 100 * 60; |
| uint8_t block_len; |
| |
| if (addr + len > flash->chip->total_size * 1024) { |
| msg_perr("Request to write to an inaccessible memory address " |
| "(addr=0x%x, len=%d).\n", addr, len); |
| return -1; |
| } |
| |
| msg_pdbg("Writing %d bytes starting at 0x%06x.\n", len, addr); |
| /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ |
| REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS)); |
| |
| while (len > 0) { |
| ich_hwseq_set_addr(addr); |
| /* Obey programmer limit... */ |
| block_len = min(len, flash->mst->opaque.max_data_write); |
| /* as well as flash chip page borders as demanded in the Intel datasheets. */ |
| block_len = min(block_len, 256 - (addr & 0xFF)); |
| ich_fill_data(buf, block_len, ICH9_REG_FDATA0); |
| hsfc = REGREAD16(ICH9_REG_HSFC); |
| hsfc &= ~hwseq_data.hsfc_fcycle; /* clear operation */ |
| hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */ |
| hsfc &= ~HSFC_FDBC; /* clear byte count */ |
| /* set byte count */ |
| hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); |
| hsfc |= HSFC_FGO; /* start */ |
| REGWRITE16(ICH9_REG_HSFC, hsfc); |
| |
| if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) |
| return -1; |
| addr += block_len; |
| buf += block_len; |
| len -= block_len; |
| } |
| return 0; |
| } |
| |
| static int ich_spi_send_multicommand(struct flashctx *flash, |
| struct spi_command *cmds) |
| { |
| int ret = 0; |
| int i; |
| int oppos, preoppos; |
| for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) { |
| if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) { |
| /* Next command is valid. */ |
| preoppos = find_preop(curopcodes, cmds->writearr[0]); |
| oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]); |
| if ((oppos == -1) && (preoppos != -1)) { |
| /* Current command is listed as preopcode in |
| * ICH struct OPCODES, but next command is not |
| * listed as opcode in that struct. |
| * Check for command sanity, then |
| * try to reprogram the ICH opcode list. |
| */ |
| if (find_preop(curopcodes, |
| (cmds + 1)->writearr[0]) != -1) { |
| msg_perr("%s: Two subsequent " |
| "preopcodes 0x%02x and 0x%02x, " |
| "ignoring the first.\n", |
| __func__, cmds->writearr[0], |
| (cmds + 1)->writearr[0]); |
| continue; |
| } |
| /* If the chipset is locked down, we'll fail |
| * during execution of the next command anyway. |
| * No need to bother with fixups. |
| */ |
| if (!ichspi_lock) { |
| oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt); |
| if (oppos == -1) |
| continue; |
| curopcodes->opcode[oppos].atomic = preoppos + 1; |
| continue; |
| } |
| } |
| if ((oppos != -1) && (preoppos != -1)) { |
| /* Current command is listed as preopcode in |
| * ICH struct OPCODES and next command is listed |
| * as opcode in that struct. Match them up. |
| */ |
| curopcodes->opcode[oppos].atomic = preoppos + 1; |
| continue; |
| } |
| /* If none of the above if-statements about oppos or |
| * preoppos matched, this is a normal opcode. |
| */ |
| } |
| ret = ich_spi_send_command(flash, cmds->writecnt, cmds->readcnt, |
| cmds->writearr, cmds->readarr); |
| /* Reset the type of all opcodes to non-atomic. */ |
| for (i = 0; i < 8; i++) |
| curopcodes->opcode[i].atomic = 0; |
| } |
| return ret; |
| } |
| |
| #define ICH_BMWAG(x) ((x >> 24) & 0xff) |
| #define ICH_BMRAG(x) ((x >> 16) & 0xff) |
| #define ICH_BRWA(x) ((x >> 8) & 0xff) |
| #define ICH_BRRA(x) ((x >> 0) & 0xff) |
| |
| /* returns 0 if region is unused or r/w */ |
| static int ich9_handle_frap(uint32_t frap, int i) |
| { |
| static const char *const access_names[4] = { |
| "locked", "read-only", "write-only", "read-write" |
| }; |
| const int rwperms_unknown = ARRAY_SIZE(access_names); |
| static const char *const region_names[5] = { |
| "Flash Descriptor", "BIOS", "Management Engine", |
| "Gigabit Ethernet", "Platform Data" |
| }; |
| const char *const region_name = i < ARRAY_SIZE(region_names) ? region_names[i] : "unknown"; |
| |
| uint32_t base, limit; |
| int rwperms; |
| int offset = ICH9_REG_FREG0 + i * 4; |
| uint32_t freg = mmio_readl(ich_spibar + offset); |
| |
| if (i < 8) { |
| rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) | |
| (((ICH_BRRA(frap) >> i) & 1) << 0); |
| } else { |
| /* Datasheets don't define any access bits for regions > 7. We |
| can't rely on the actual descriptor settings either as there |
| are several overrides for them (those by other masters are |
| not even readable by us, *shrug*). */ |
| rwperms = rwperms_unknown; |
| } |
| |
| base = ICH_FREG_BASE(freg); |
| limit = ICH_FREG_LIMIT(freg); |
| if (base > limit || (freg == 0 && i > 0)) { |
| /* this FREG is disabled */ |
| msg_pdbg2("0x%02X: 0x%08x FREG%i: %s region is unused.\n", |
| offset, freg, i, region_name); |
| return 0; |
| } |
| msg_pdbg("0x%02X: 0x%08x ", offset, freg); |
| if (rwperms == 0x3) { |
| msg_pdbg("FREG%i: %s region (0x%08x-0x%08x) is %s.\n", i, |
| region_name, base, limit, access_names[rwperms]); |
| return 0; |
| } |
| if (rwperms == rwperms_unknown) { |
| msg_pdbg("FREG%i: %s region (0x%08x-0x%08x) has unknown permissions.\n", |
| i, region_name, base, limit); |
| return 0; |
| } |
| |
| msg_pwarn("FREG%i: Warning: %s region (0x%08x-0x%08x) is %s.\n", i, |
| region_name, base, limit, access_names[rwperms]); |
| return 1; |
| } |
| |
| /* In contrast to FRAP and the master section of the descriptor the bits |
| * in the PR registers have an inverted meaning. The bits in FRAP |
| * indicate read and write access _grant_. Here they indicate read |
| * and write _protection_ respectively. If both bits are 0 the address |
| * bits are ignored. |
| */ |
| #define ICH_PR_PERMS(pr) (((~((pr) >> PR_RP_OFF) & 1) << 0) | \ |
| ((~((pr) >> PR_WP_OFF) & 1) << 1)) |
| |
| /* returns 0 if range is unused (i.e. r/w) */ |
| static int ich9_handle_pr(const size_t reg_pr0, int i) |
| { |
| static const char *const access_names[3] = { |
| "locked", "read-only", "write-only" |
| }; |
| uint8_t off = reg_pr0 + (i * 4); |
| uint32_t pr = mmio_readl(ich_spibar + off); |
| unsigned int rwperms = ICH_PR_PERMS(pr); |
| |
| /* From 5 on we have GPR registers and start from 0 again. */ |
| const char *const prefix = i >= 5 ? "G" : ""; |
| if (i >= 5) |
| i -= 5; |
| |
| if (rwperms == 0x3) { |
| msg_pdbg2("0x%02X: 0x%08x (%sPR%u is unused)\n", off, pr, prefix, i); |
| return 0; |
| } |
| |
| msg_pdbg("0x%02X: 0x%08x ", off, pr); |
| msg_pwarn("%sPR%u: Warning: 0x%08x-0x%08x is %s.\n", prefix, i, ICH_FREG_BASE(pr), |
| ICH_FREG_LIMIT(pr), access_names[rwperms]); |
| return 1; |
| } |
| |
| /* Set/Clear the read and write protection enable bits of PR register @i |
| * according to @read_prot and @write_prot. */ |
| static void ich9_set_pr(const size_t reg_pr0, int i, int read_prot, int write_prot) |
| { |
| void *addr = ich_spibar + reg_pr0 + (i * 4); |
| uint32_t old = mmio_readl(addr); |
| uint32_t new; |
| |
| msg_gspew("PR%u is 0x%08x", i, old); |
| new = old & ~((1 << PR_RP_OFF) | (1 << PR_WP_OFF)); |
| if (read_prot) |
| new |= (1 << PR_RP_OFF); |
| if (write_prot) |
| new |= (1 << PR_WP_OFF); |
| if (old == new) { |
| msg_gspew(" already.\n"); |
| return; |
| } |
| msg_gspew(", trying to set it to 0x%08x ", new); |
| rmmio_writel(new, addr); |
| msg_gspew("resulted in 0x%08x.\n", mmio_readl(addr)); |
| } |
| |
| static const struct spi_master spi_master_ich7 = { |
| .type = SPI_CONTROLLER_ICH7, |
| .max_data_read = 64, |
| .max_data_write = 64, |
| .command = ich_spi_send_command, |
| .multicommand = ich_spi_send_multicommand, |
| .read = default_spi_read, |
| .write_256 = default_spi_write_256, |
| .write_aai = default_spi_write_aai, |
| }; |
| |
| static const struct spi_master spi_master_ich9 = { |
| .type = SPI_CONTROLLER_ICH9, |
| .max_data_read = 64, |
| .max_data_write = 64, |
| .command = ich_spi_send_command, |
| .multicommand = ich_spi_send_multicommand, |
| .read = default_spi_read, |
| .write_256 = default_spi_write_256, |
| .write_aai = default_spi_write_aai, |
| }; |
| |
| static const struct opaque_master opaque_master_ich_hwseq = { |
| .max_data_read = 64, |
| .max_data_write = 64, |
| .probe = ich_hwseq_probe, |
| .read = ich_hwseq_read, |
| .write = ich_hwseq_write, |
| .erase = ich_hwseq_block_erase, |
| }; |
| |
| int ich_init_spi(void *spibar, enum ich_chipset ich_gen) |
| { |
| int i; |
| uint16_t tmp2; |
| uint32_t tmp; |
| char *arg; |
| int ich_spi_force = 0; |
| int ich_spi_rw_restricted = 0; |
| int desc_valid = 0; |
| struct ich_descriptors desc = {{ 0 }}; |
| enum ich_spi_mode { |
| ich_auto, |
| ich_hwseq, |
| ich_swseq |
| } ich_spi_mode = ich_auto; |
| size_t num_freg, num_pr, reg_pr0; |
| |
| ich_generation = ich_gen; |
| ich_spibar = spibar; |
| |
| /* Moving registers / bits */ |
| if (ich_generation == CHIPSET_100_SERIES_SUNRISE_POINT) { |
| num_freg = 10; |
| num_pr = 6; /* Includes GPR0 */ |
| reg_pr0 = PCH100_REG_FPR0; |
| swseq_data.reg_ssfsc = PCH100_REG_SSFSC; |
| swseq_data.reg_preop = PCH100_REG_PREOP; |
| swseq_data.reg_optype = PCH100_REG_OPTYPE; |
| swseq_data.reg_opmenu = PCH100_REG_OPMENU; |
| hwseq_data.addr_mask = PCH100_FADDR_FLA; |
| hwseq_data.only_4k = true; |
| hwseq_data.hsfc_fcycle = PCH100_HSFC_FCYCLE; |
| } if (ich_generation == CHIPSET_C620_SERIES_LEWISBURG) { |
| num_freg = 12; /* 12 MMIO regs, but 16 regions in FD spec */ |
| num_pr = 6; /* Includes GPR0 */ |
| reg_pr0 = PCH100_REG_FPR0; |
| swseq_data.reg_ssfsc = PCH100_REG_SSFSC; |
| swseq_data.reg_preop = PCH100_REG_PREOP; |
| swseq_data.reg_optype = PCH100_REG_OPTYPE; |
| swseq_data.reg_opmenu = PCH100_REG_OPMENU; |
| hwseq_data.addr_mask = PCH100_FADDR_FLA; |
| hwseq_data.only_4k = true; |
| hwseq_data.hsfc_fcycle = PCH100_HSFC_FCYCLE; |
| } else { |
| num_freg = 5; |
| num_pr = 5; |
| reg_pr0 = ICH9_REG_PR0; |
| swseq_data.reg_ssfsc = ICH9_REG_SSFS; |
| swseq_data.reg_preop = ICH9_REG_PREOP; |
| swseq_data.reg_optype = ICH9_REG_OPTYPE; |
| swseq_data.reg_opmenu = ICH9_REG_OPMENU; |
| hwseq_data.addr_mask = ICH9_FADDR_FLA; |
| hwseq_data.only_4k = false; |
| hwseq_data.hsfc_fcycle = HSFC_FCYCLE; |
| } |
| |
| switch (ich_generation) { |
| case CHIPSET_ICH7: |
| case CHIPSET_TUNNEL_CREEK: |
| case CHIPSET_CENTERTON: |
| msg_pdbg("0x00: 0x%04x (SPIS)\n", |
| mmio_readw(ich_spibar + 0)); |
| msg_pdbg("0x02: 0x%04x (SPIC)\n", |
| mmio_readw(ich_spibar + 2)); |
| msg_pdbg("0x04: 0x%08x (SPIA)\n", |
| mmio_readl(ich_spibar + 4)); |
| ichspi_bbar = mmio_readl(ich_spibar + 0x50); |
| msg_pdbg("0x50: 0x%08x (BBAR)\n", |
| ichspi_bbar); |
| msg_pdbg("0x54: 0x%04x (PREOP)\n", |
| mmio_readw(ich_spibar + 0x54)); |
| msg_pdbg("0x56: 0x%04x (OPTYPE)\n", |
| mmio_readw(ich_spibar + 0x56)); |
| msg_pdbg("0x58: 0x%08x (OPMENU)\n", |
| mmio_readl(ich_spibar + 0x58)); |
| msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", |
| mmio_readl(ich_spibar + 0x5c)); |
| for (i = 0; i < 3; i++) { |
| int offs; |
| offs = 0x60 + (i * 4); |
| msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| } |
| if (mmio_readw(ich_spibar) & (1 << 15)) { |
| msg_pwarn("WARNING: SPI Configuration Lockdown activated.\n"); |
| ichspi_lock = 1; |
| } |
| ich_init_opcodes(); |
| ich_set_bbar(0); |
| register_spi_master(&spi_master_ich7); |
| break; |
| case CHIPSET_ICH8: |
| default: /* Future version might behave the same */ |
| arg = extract_programmer_param("ich_spi_mode"); |
| if (arg && !strcmp(arg, "hwseq")) { |
| ich_spi_mode = ich_hwseq; |
| msg_pspew("user selected hwseq\n"); |
| } else if (arg && !strcmp(arg, "swseq")) { |
| ich_spi_mode = ich_swseq; |
| msg_pspew("user selected swseq\n"); |
| } else if (arg && !strcmp(arg, "auto")) { |
| msg_pspew("user selected auto\n"); |
| ich_spi_mode = ich_auto; |
| } else if (arg && !strlen(arg)) { |
| msg_perr("Missing argument for ich_spi_mode.\n"); |
| free(arg); |
| return ERROR_FATAL; |
| } else if (arg) { |
| msg_perr("Unknown argument for ich_spi_mode: %s\n", |
| arg); |
| free(arg); |
| return ERROR_FATAL; |
| } |
| free(arg); |
| |
| arg = extract_programmer_param("ich_spi_force"); |
| if (arg && !strcmp(arg, "yes")) { |
| ich_spi_force = 1; |
| msg_pspew("ich_spi_force enabled.\n"); |
| } else if (arg && !strlen(arg)) { |
| msg_perr("Missing argument for ich_spi_force.\n"); |
| free(arg); |
| return ERROR_FATAL; |
| } else if (arg) { |
| msg_perr("Unknown argument for ich_spi_force: \"%s\" " |
| "(not \"yes\").\n", arg); |
| free(arg); |
| return ERROR_FATAL; |
| } |
| free(arg); |
| |
| tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFS); |
| msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2); |
| prettyprint_ich9_reg_hsfs(tmp2); |
| if (tmp2 & HSFS_FLOCKDN) { |
| msg_pwarn("Warning: SPI Configuration Lockdown activated.\n"); |
| ichspi_lock = 1; |
| } |
| if (tmp2 & HSFS_FDV) |
| desc_valid = 1; |
| if (!(tmp2 & HSFS_FDOPSS) && desc_valid) |
| msg_pinfo("The Flash Descriptor Override Strap-Pin is set. Restrictions implied by\n" |
| "the Master Section of the flash descriptor are NOT in effect. Please note\n" |
| "that Protected Range (PR) restrictions still apply.\n"); |
| ich_init_opcodes(); |
| |
| if (desc_valid) { |
| tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFC); |
| msg_pdbg("0x06: 0x%04x (HSFC)\n", tmp2); |
| prettyprint_ich9_reg_hsfc(tmp2); |
| } |
| |
| tmp = mmio_readl(ich_spibar + ICH9_REG_FADDR); |
| msg_pdbg2("0x08: 0x%08x (FADDR)\n", tmp); |
| |
| if (ich_gen == CHIPSET_100_SERIES_SUNRISE_POINT || ich_gen == CHIPSET_C620_SERIES_LEWISBURG) { |
| const uint32_t dlock = mmio_readl(ich_spibar + PCH100_REG_DLOCK); |
| msg_pdbg("0x0c: 0x%08x (DLOCK)\n", dlock); |
| prettyprint_pch100_reg_dlock(dlock); |
| } |
| |
| if (desc_valid) { |
| tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP); |
| msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp); |
| msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp)); |
| msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp)); |
| msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp)); |
| msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp)); |
| |
| /* Handle FREGx and FRAP registers */ |
| for (i = 0; i < num_freg; i++) |
| ich_spi_rw_restricted |= ich9_handle_frap(tmp, i); |
| if (ich_spi_rw_restricted) |
| msg_pwarn("Not all flash regions are freely accessible by flashrom. This is " |
| "most likely\ndue to an active ME. Please see " |
| "https://flashrom.org/ME for details.\n"); |
| } |
| |
| /* Handle PR registers */ |
| for (i = 0; i < num_pr; i++) { |
| /* if not locked down try to disable PR locks first */ |
| if (!ichspi_lock) |
| ich9_set_pr(reg_pr0, i, 0, 0); |
| ich_spi_rw_restricted |= ich9_handle_pr(reg_pr0, i); |
| } |
| |
| if (ich_spi_rw_restricted) { |
| if (!ich_spi_force) |
| programmer_may_write = 0; |
| msg_pinfo("Writes have been disabled for safety reasons. You can enforce write\n" |
| "support with the ich_spi_force programmer option, but you will most likely\n" |
| "harm your hardware! If you force flashrom you will get no support if\n" |
| "something breaks. On a few mainboards it is possible to enable write\n" |
| "access by setting a jumper (see its documentation or the board itself).\n"); |
| if (ich_spi_force) |
| msg_pinfo("Continuing with write support because the user forced us to!\n"); |
| } |
| |
| tmp = mmio_readl(ich_spibar + swseq_data.reg_ssfsc); |
| msg_pdbg("0x%zx: 0x%02x (SSFS)\n", swseq_data.reg_ssfsc, tmp & 0xff); |
| prettyprint_ich9_reg_ssfs(tmp); |
| if (tmp & SSFS_FCERR) { |
| msg_pdbg("Clearing SSFS.FCERR\n"); |
| mmio_writeb(SSFS_FCERR, ich_spibar + swseq_data.reg_ssfsc); |
| } |
| msg_pdbg("0x%zx: 0x%06x (SSFC)\n", swseq_data.reg_ssfsc + 1, tmp >> 8); |
| prettyprint_ich9_reg_ssfc(tmp); |
| |
| msg_pdbg("0x%zx: 0x%04x (PREOP)\n", |
| swseq_data.reg_preop, mmio_readw(ich_spibar + swseq_data.reg_preop)); |
| msg_pdbg("0x%zx: 0x%04x (OPTYPE)\n", |
| swseq_data.reg_optype, mmio_readw(ich_spibar + swseq_data.reg_optype)); |
| msg_pdbg("0x%zx: 0x%08x (OPMENU)\n", |
| swseq_data.reg_opmenu, mmio_readl(ich_spibar + swseq_data.reg_opmenu)); |
| msg_pdbg("0x%zx: 0x%08x (OPMENU+4)\n", |
| swseq_data.reg_opmenu + 4, mmio_readl(ich_spibar + swseq_data.reg_opmenu + 4)); |
| if (ich_generation == CHIPSET_ICH8 && desc_valid) { |
| tmp = mmio_readl(ich_spibar + ICH8_REG_VSCC); |
| msg_pdbg("0xC1: 0x%08x (VSCC)\n", tmp); |
| msg_pdbg("VSCC: "); |
| prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, true); |
| } else if (ich_generation != CHIPSET_100_SERIES_SUNRISE_POINT && |
| ich_generation != CHIPSET_C620_SERIES_LEWISBURG) { |
| if (ich_generation != CHIPSET_BAYTRAIL && desc_valid) { |
| ichspi_bbar = mmio_readl(ich_spibar + ICH9_REG_BBAR); |
| msg_pdbg("0xA0: 0x%08x (BBAR)\n", |
| ichspi_bbar); |
| ich_set_bbar(0); |
| } |
| |
| if (desc_valid) { |
| tmp = mmio_readl(ich_spibar + ICH9_REG_LVSCC); |
| msg_pdbg("0xC4: 0x%08x (LVSCC)\n", tmp); |
| msg_pdbg("LVSCC: "); |
| prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, true); |
| |
| tmp = mmio_readl(ich_spibar + ICH9_REG_UVSCC); |
| msg_pdbg("0xC8: 0x%08x (UVSCC)\n", tmp); |
| msg_pdbg("UVSCC: "); |
| prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, false); |
| |
| tmp = mmio_readl(ich_spibar + ICH9_REG_FPB); |
| msg_pdbg("0xD0: 0x%08x (FPB)\n", tmp); |
| } |
| } |
| |
| if (desc_valid) { |
| if (read_ich_descriptors_via_fdo(ich_gen, ich_spibar, &desc) == ICH_RET_OK) |
| prettyprint_ich_descriptors(ich_gen, &desc); |
| |
| /* If the descriptor is valid and indicates multiple |
| * flash devices we need to use hwseq to be able to |
| * access the second flash device. |
| */ |
| if (ich_spi_mode == ich_auto && desc.content.NC != 0) { |
| msg_pinfo("Enabling hardware sequencing due to " |
| "multiple flash chips detected.\n"); |
| ich_spi_mode = ich_hwseq; |
| } |
| } |
| |
| if (ich_spi_mode == ich_auto && ichspi_lock && |
| ich_missing_opcodes()) { |
| msg_pinfo("Enabling hardware sequencing because " |
| "some important opcode is locked.\n"); |
| ich_spi_mode = ich_hwseq; |
| } |
| |
| if (ich_spi_mode == ich_auto && ich_gen == CHIPSET_100_SERIES_SUNRISE_POINT) { |
| msg_pdbg("Enabling hardware sequencing by default for 100 series PCH.\n"); |
| ich_spi_mode = ich_hwseq; |
| } |
| |
| if (ich_spi_mode == ich_hwseq) { |
| if (!desc_valid) { |
| msg_perr("Hardware sequencing was requested " |
| "but the flash descriptor is not " |
| "valid. Aborting.\n"); |
| return ERROR_FATAL; |
| } |
| |
| int tmpi = getFCBA_component_density(ich_generation, &desc, 0); |
| if (tmpi < 0) { |
| msg_perr("Could not determine density of flash component %d.\n", 0); |
| return ERROR_FATAL; |
| } |
| hwseq_data.size_comp0 = tmpi; |
| |
| tmpi = getFCBA_component_density(ich_generation, &desc, 1); |
| if (tmpi < 0) { |
| msg_perr("Could not determine density of flash component %d.\n", 1); |
| return ERROR_FATAL; |
| } |
| hwseq_data.size_comp1 = tmpi; |
| |
| register_opaque_master(&opaque_master_ich_hwseq); |
| } else { |
| register_spi_master(&spi_master_ich9); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static const struct spi_master spi_master_via = { |
| .type = SPI_CONTROLLER_VIA, |
| .max_data_read = 16, |
| .max_data_write = 16, |
| .command = ich_spi_send_command, |
| .multicommand = ich_spi_send_multicommand, |
| .read = default_spi_read, |
| .write_256 = default_spi_write_256, |
| .write_aai = default_spi_write_aai, |
| }; |
| |
| int via_init_spi(uint32_t mmio_base) |
| { |
| int i; |
| |
| ich_spibar = rphysmap("VIA SPI MMIO registers", mmio_base, 0x70); |
| if (ich_spibar == ERROR_PTR) |
| return ERROR_FATAL; |
| /* Do we really need no write enable? Like the LPC one at D17F0 0x40 */ |
| |
| /* Not sure if it speaks all these bus protocols. */ |
| internal_buses_supported = BUS_LPC | BUS_FWH; |
| ich_generation = CHIPSET_ICH7; |
| register_spi_master(&spi_master_via); |
| |
| msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(ich_spibar + 0)); |
| msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(ich_spibar + 2)); |
| msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4)); |
| for (i = 0; i < 2; i++) { |
| int offs; |
| offs = 8 + (i * 8); |
| msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4, |
| mmio_readl(ich_spibar + offs + 4), i); |
| } |
| ichspi_bbar = mmio_readl(ich_spibar + 0x50); |
| msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar); |
| msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(ich_spibar + 0x54)); |
| msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(ich_spibar + 0x56)); |
| msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58)); |
| msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c)); |
| for (i = 0; i < 3; i++) { |
| int offs; |
| offs = 0x60 + (i * 4); |
| msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| } |
| msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n", |
| mmio_readw(ich_spibar + 0x6c)); |
| if (mmio_readw(ich_spibar) & (1 << 15)) { |
| msg_pwarn("Warning: SPI Configuration Lockdown activated.\n"); |
| ichspi_lock = 1; |
| } |
| |
| ich_set_bbar(0); |
| ich_init_opcodes(); |
| |
| return 0; |
| } |
| |
| #endif |