| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2009 Paul Fox <pgf@laptop.org> |
| * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #if CONFIG_FT2232_SPI == 1 |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <ctype.h> |
| #include "flash.h" |
| #include "chipdrivers.h" |
| #include "spi.h" |
| #include <ftdi.h> |
| |
| /* |
| * The 'H' chips can run internally at either 12MHz or 60MHz. |
| * The non-H chips can only run at 12MHz. |
| */ |
| #define CLOCK_5X 1 |
| |
| /* |
| * In either case, the divisor is a simple integer clock divider. |
| * If CLOCK_5X is set, this divisor divides 30MHz, else it divides 6MHz. |
| */ |
| #define DIVIDE_BY 3 /* e.g. '3' will give either 10MHz or 2MHz SPI clock. */ |
| |
| #define BITMODE_BITBANG_NORMAL 1 |
| #define BITMODE_BITBANG_SPI 2 |
| |
| static struct ftdi_context ftdic_context; |
| |
| static int send_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) |
| { |
| int r; |
| r = ftdi_write_data(ftdic, (unsigned char *) buf, size); |
| if (r < 0) { |
| msg_perr("ftdi_write_data: %d, %s\n", r, |
| ftdi_get_error_string(ftdic)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int get_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) |
| { |
| int r; |
| r = ftdi_read_data(ftdic, (unsigned char *) buf, size); |
| if (r < 0) { |
| msg_perr("ftdi_read_data: %d, %s\n", r, |
| ftdi_get_error_string(ftdic)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int ft2232_spi_init(void) |
| { |
| int f; |
| struct ftdi_context *ftdic = &ftdic_context; |
| unsigned char buf[512]; |
| char *portpos = NULL; |
| int ft2232_type = FTDI_FT4232H; |
| enum ftdi_interface ft2232_interface = INTERFACE_B; |
| |
| if (ftdi_init(ftdic) < 0) { |
| msg_perr("ftdi_init failed\n"); |
| return EXIT_FAILURE; // TODO |
| } |
| |
| if (programmer_param && !strlen(programmer_param)) { |
| free(programmer_param); |
| programmer_param = NULL; |
| } |
| if (programmer_param) { |
| if (strstr(programmer_param, "2232")) |
| ft2232_type = FTDI_FT2232H; |
| if (strstr(programmer_param, "4232")) |
| ft2232_type = FTDI_FT4232H; |
| portpos = strstr(programmer_param, "port="); |
| if (portpos) { |
| portpos += 5; |
| switch (toupper(*portpos)) { |
| case 'A': |
| ft2232_interface = INTERFACE_A; |
| break; |
| case 'B': |
| ft2232_interface = INTERFACE_B; |
| break; |
| default: |
| msg_perr("Invalid interface specified, " |
| "using default.\n"); |
| } |
| } |
| free(programmer_param); |
| } |
| msg_pdbg("Using device type %s ", |
| (ft2232_type == FTDI_FT2232H) ? "2232H" : "4232H"); |
| msg_pdbg("interface %s\n", |
| (ft2232_interface == INTERFACE_A) ? "A" : "B"); |
| |
| f = ftdi_usb_open(ftdic, 0x0403, ft2232_type); |
| |
| if (f < 0 && f != -5) { |
| msg_perr("Unable to open FTDI device: %d (%s)\n", f, |
| ftdi_get_error_string(ftdic)); |
| exit(-1); // TODO |
| } |
| |
| if (ftdi_set_interface(ftdic, ft2232_interface) < 0) { |
| msg_perr("Unable to select interface: %s\n", |
| ftdic->error_str); |
| } |
| |
| if (ftdi_usb_reset(ftdic) < 0) { |
| msg_perr("Unable to reset FTDI device\n"); |
| } |
| |
| if (ftdi_set_latency_timer(ftdic, 2) < 0) { |
| msg_perr("Unable to set latency timer\n"); |
| } |
| |
| if (ftdi_write_data_set_chunksize(ftdic, 512)) { |
| msg_perr("Unable to set chunk size\n"); |
| } |
| |
| if (ftdi_set_bitmode(ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) { |
| msg_perr("Unable to set bitmode to SPI\n"); |
| } |
| |
| #if CLOCK_5X |
| msg_pdbg("Disable divide-by-5 front stage\n"); |
| buf[0] = 0x8a; /* Disable divide-by-5. */ |
| if (send_buf(ftdic, buf, 1)) |
| return -1; |
| #define MPSSE_CLK 60.0 |
| |
| #else |
| |
| #define MPSSE_CLK 12.0 |
| |
| #endif |
| msg_pdbg("Set clock divisor\n"); |
| buf[0] = 0x86; /* command "set divisor" */ |
| /* valueL/valueH are (desired_divisor - 1) */ |
| buf[1] = (DIVIDE_BY - 1) & 0xff; |
| buf[2] = ((DIVIDE_BY - 1) >> 8) & 0xff; |
| if (send_buf(ftdic, buf, 3)) |
| return -1; |
| |
| msg_pdbg("SPI clock is %fMHz\n", |
| (double)(MPSSE_CLK / (((DIVIDE_BY - 1) + 1) * 2))); |
| |
| /* Disconnect TDI/DO to TDO/DI for loopback. */ |
| msg_pdbg("No loopback of TDI/DO TDO/DI\n"); |
| buf[0] = 0x85; |
| if (send_buf(ftdic, buf, 1)) |
| return -1; |
| |
| msg_pdbg("Set data bits\n"); |
| /* Set data bits low-byte command: |
| * value: 0x08 CS=high, DI=low, DO=low, SK=low |
| * dir: 0x0b CS=output, DI=input, DO=output, SK=output |
| */ |
| #define CS_BIT 0x08 |
| buf[0] = SET_BITS_LOW; |
| buf[1] = CS_BIT; |
| buf[2] = 0x0b; |
| if (send_buf(ftdic, buf, 3)) |
| return -1; |
| |
| // msg_pdbg("\nft2232 chosen\n"); |
| |
| buses_supported = CHIP_BUSTYPE_SPI; |
| spi_controller = SPI_CONTROLLER_FT2232; |
| |
| return 0; |
| } |
| |
| int ft2232_spi_send_command(unsigned int writecnt, unsigned int readcnt, |
| const unsigned char *writearr, unsigned char *readarr) |
| { |
| struct ftdi_context *ftdic = &ftdic_context; |
| static unsigned char *buf = NULL; |
| /* failed is special. We use bitwise ops, but it is essentially bool. */ |
| int i = 0, ret = 0, failed = 0; |
| int bufsize; |
| static int oldbufsize = 0; |
| |
| if (writecnt > 65536 || readcnt > 65536) |
| return SPI_INVALID_LENGTH; |
| |
| /* buf is not used for the response from the chip. */ |
| bufsize = max(writecnt + 9, 260 + 9); |
| /* Never shrink. realloc() calls are expensive. */ |
| if (bufsize > oldbufsize) { |
| buf = realloc(buf, bufsize); |
| if (!buf) { |
| msg_perr("Out of memory!\n"); |
| exit(1); |
| } |
| oldbufsize = bufsize; |
| } |
| |
| /* |
| * Minimize USB transfers by packing as many commands as possible |
| * together. If we're not expecting to read, we can assert CS#, write, |
| * and deassert CS# all in one shot. If reading, we do three separate |
| * operations. |
| */ |
| msg_pspew("Assert CS#\n"); |
| buf[i++] = SET_BITS_LOW; |
| buf[i++] = 0 & ~CS_BIT; /* assertive */ |
| buf[i++] = 0x0b; |
| |
| if (writecnt) { |
| buf[i++] = 0x11; |
| buf[i++] = (writecnt - 1) & 0xff; |
| buf[i++] = ((writecnt - 1) >> 8) & 0xff; |
| memcpy(buf + i, writearr, writecnt); |
| i += writecnt; |
| } |
| |
| /* |
| * Optionally terminate this batch of commands with a |
| * read command, then do the fetch of the results. |
| */ |
| if (readcnt) { |
| buf[i++] = 0x20; |
| buf[i++] = (readcnt - 1) & 0xff; |
| buf[i++] = ((readcnt - 1) >> 8) & 0xff; |
| ret = send_buf(ftdic, buf, i); |
| failed = ret; |
| /* We can't abort here, we still have to deassert CS#. */ |
| if (ret) |
| msg_perr("send_buf failed before read: %i\n", |
| ret); |
| i = 0; |
| if (ret == 0) { |
| /* |
| * FIXME: This is unreliable. There's no guarantee that |
| * we read the response directly after sending the read |
| * command. We may be scheduled out etc. |
| */ |
| ret = get_buf(ftdic, readarr, readcnt); |
| failed |= ret; |
| /* We can't abort here either. */ |
| if (ret) |
| msg_perr("get_buf failed: %i\n", ret); |
| } |
| } |
| |
| msg_pspew("De-assert CS#\n"); |
| buf[i++] = SET_BITS_LOW; |
| buf[i++] = CS_BIT; |
| buf[i++] = 0x0b; |
| ret = send_buf(ftdic, buf, i); |
| failed |= ret; |
| if (ret) |
| msg_perr("send_buf failed at end: %i\n", ret); |
| |
| return failed ? -1 : 0; |
| } |
| |
| int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) |
| { |
| /* Maximum read length is 64k bytes. */ |
| return spi_read_chunked(flash, buf, start, len, 64 * 1024); |
| } |
| |
| int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf) |
| { |
| int total_size = 1024 * flash->total_size; |
| |
| spi_disable_blockprotect(); |
| /* Erase first. */ |
| msg_pinfo("Erasing flash before programming... "); |
| if (erase_flash(flash)) { |
| msg_perr("ERASE FAILED!\n"); |
| return -1; |
| } |
| msg_pinfo("done.\n"); |
| msg_pdbg("total_size is %d\n", total_size); |
| return spi_write_chunked(flash, buf, 0, total_size, 256); |
| } |
| |
| #endif |