blob: 8add13e9a02373d5a1aeecebefba283e097e7962 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
* Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* This module is designed for supporting the devices
* ST M25P40
* ST M25P80
* ST M25P16
* ST M25P32 already tested
* ST M25P64
* AT 25DF321 already tested
*
*/
#include <string.h>
#include "flash.h"
#include "chipdrivers.h"
#include "spi.h"
/* ICH9 controller register definition */
#define ICH9_REG_FADDR 0x08 /* 32 Bits */
#define ICH9_REG_FDATA0 0x10 /* 64 Bytes */
#define ICH9_REG_SSFS 0x90 /* 08 Bits */
#define SSFS_SCIP 0x00000001
#define SSFS_CDS 0x00000004
#define SSFS_FCERR 0x00000008
#define SSFS_AEL 0x00000010
#define ICH9_REG_SSFC 0x91 /* 24 Bits */
#define SSFC_SCGO 0x00000200
#define SSFC_ACS 0x00000400
#define SSFC_SPOP 0x00000800
#define SSFC_COP 0x00001000
#define SSFC_DBC 0x00010000
#define SSFC_DS 0x00400000
#define SSFC_SME 0x00800000
#define SSFC_SCF 0x01000000
#define SSFC_SCF_20MHZ 0x00000000
#define SSFC_SCF_33MHZ 0x01000000
#define ICH9_REG_PREOP 0x94 /* 16 Bits */
#define ICH9_REG_OPTYPE 0x96 /* 16 Bits */
#define ICH9_REG_OPMENU 0x98 /* 64 Bits */
// ICH9R SPI commands
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
// ICH7 registers
#define ICH7_REG_SPIS 0x00 /* 16 Bits */
#define SPIS_SCIP 0x00000001
#define SPIS_CDS 0x00000004
#define SPIS_FCERR 0x00000008
/* VIA SPI is compatible with ICH7, but maxdata
to transfer is 16 bytes.
DATA byte count on ICH7 is 8:13, on VIA 8:11
bit 12 is port select CS0 CS1
bit 13 is FAST READ enable
bit 7 is used with fast read and one shot controls CS de-assert?
*/
#define ICH7_REG_SPIC 0x02 /* 16 Bits */
#define SPIC_SCGO 0x0002
#define SPIC_ACS 0x0004
#define SPIC_SPOP 0x0008
#define SPIC_DS 0x4000
#define ICH7_REG_SPIA 0x04 /* 32 Bits */
#define ICH7_REG_SPID0 0x08 /* 64 Bytes */
#define ICH7_REG_PREOP 0x54 /* 16 Bits */
#define ICH7_REG_OPTYPE 0x56 /* 16 Bits */
#define ICH7_REG_OPMENU 0x58 /* 64 Bits */
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
int ichspi_lock = 0;
typedef struct _OPCODE {
uint8_t opcode; //This commands spi opcode
uint8_t spi_type; //This commands spi type
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;
/* Suggested opcode definition:
* Preop 1: Write Enable
* Preop 2: Write Status register enable
*
* OP 0: Write address
* OP 1: Read Address
* OP 2: ERASE block
* OP 3: Read Status register
* OP 4: Read ID
* OP 5: Write Status register
* OP 6: chip private (read JEDEC id)
* OP 7: Chip erase
*/
typedef struct _OPCODES {
uint8_t preop[2];
OPCODE opcode[8];
} OPCODES;
static OPCODES *curopcodes = NULL;
/* HW access functions */
static uint32_t REGREAD32(int X)
{
return mmio_readl(spibar + X);
}
static uint16_t REGREAD16(int X)
{
return mmio_readw(spibar + X);
}
#define REGWRITE32(X,Y) mmio_writel(Y, spibar+X)
#define REGWRITE16(X,Y) mmio_writew(Y, spibar+X)
#define REGWRITE8(X,Y) mmio_writeb(Y, spibar+X)
/* Common SPI functions */
static int find_opcode(OPCODES *op, uint8_t opcode);
static int find_preop(OPCODES *op, uint8_t preop);
static int generate_opcodes(OPCODES * op);
static int program_opcodes(OPCODES * op);
static int run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data);
/* for pairing opcodes with their required preop */
struct preop_opcode_pair {
uint8_t preop;
uint8_t opcode;
};
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
struct preop_opcode_pair pops[] = {
{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
{JEDEC_WREN, JEDEC_SE}, /* sector erase */
{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
/* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
{JEDEC_WREN, JEDEC_WRSR},
{JEDEC_EWSR, JEDEC_WRSR},
{0,}
};
/* Reasonable default configuration. Needs ad-hoc modifications if we
* encounter unlisted opcodes. Fun.
*/
OPCODES O_ST_M25P = {
{
JEDEC_WREN,
JEDEC_EWSR,
},
{
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
}
};
OPCODES O_EXISTING = {};
static int find_opcode(OPCODES *op, uint8_t opcode)
{
int a;
for (a = 0; a < 8; a++) {
if (op->opcode[a].opcode == opcode)
return a;
}
return -1;
}
static int find_preop(OPCODES *op, uint8_t preop)
{
int a;
for (a = 0; a < 2; a++) {
if (op->preop[a] == preop)
return a;
}
return -1;
}
/* Create a struct OPCODES based on what we find in the locked down chipset. */
static int generate_opcodes(OPCODES * op)
{
int a;
uint16_t preop, optype;
uint32_t opmenu[2];
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_VIA:
preop = REGREAD16(ICH7_REG_PREOP);
optype = REGREAD16(ICH7_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
break;
case SPI_CONTROLLER_ICH9:
preop = REGREAD16(ICH9_REG_PREOP);
optype = REGREAD16(ICH9_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH9_REG_OPMENU);
opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4);
break;
default:
msg_perr("%s: unsupported chipset\n", __func__);
return -1;
}
op->preop[0] = (uint8_t) preop;
op->preop[1] = (uint8_t) (preop >> 8);
for (a = 0; a < 8; a++) {
op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
optype >>= 2;
}
for (a = 0; a < 4; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
opmenu[0] >>= 8;
}
for (a = 4; a < 8; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
opmenu[1] >>= 8;
}
/* No preopcodes used by default. */
for (a = 0; a < 8; a++)
op->opcode[a].atomic = 0;
return 0;
}
int program_opcodes(OPCODES * op)
{
uint8_t a;
uint16_t preop, optype;
uint32_t opmenu[2];
/* Program Prefix Opcodes */
/* 0:7 Prefix Opcode 1 */
preop = (op->preop[0]);
/* 8:16 Prefix Opcode 2 */
preop |= ((uint16_t) op->preop[1]) << 8;
/* Program Opcode Types 0 - 7 */
optype = 0;
for (a = 0; a < 8; a++) {
optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
}
/* Program Allowable Opcodes 0 - 3 */
opmenu[0] = 0;
for (a = 0; a < 4; a++) {
opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
}
/*Program Allowable Opcodes 4 - 7 */
opmenu[1] = 0;
for (a = 4; a < 8; a++) {
opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
}
msg_pdbg("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_VIA:
REGWRITE16(ICH7_REG_PREOP, preop);
REGWRITE16(ICH7_REG_OPTYPE, optype);
REGWRITE32(ICH7_REG_OPMENU, opmenu[0]);
REGWRITE32(ICH7_REG_OPMENU + 4, opmenu[1]);
break;
case SPI_CONTROLLER_ICH9:
REGWRITE16(ICH9_REG_PREOP, preop);
REGWRITE16(ICH9_REG_OPTYPE, optype);
REGWRITE32(ICH9_REG_OPMENU, opmenu[0]);
REGWRITE32(ICH9_REG_OPMENU + 4, opmenu[1]);
break;
default:
msg_perr("%s: unsupported chipset\n", __func__);
return -1;
}
return 0;
}
/* This function generates OPCODES from or programs OPCODES to ICH according to
* the chipset's SPI configuration lock.
*
* It should be called before ICH sends any spi command.
*/
int ich_init_opcodes(void)
{
int rc = 0;
OPCODES *curopcodes_done;
if (curopcodes)
return 0;
if (ichspi_lock) {
msg_pdbg("Generating OPCODES... ");
curopcodes_done = &O_EXISTING;
rc = generate_opcodes(curopcodes_done);
} else {
msg_pdbg("Programming OPCODES... ");
curopcodes_done = &O_ST_M25P;
rc = program_opcodes(curopcodes_done);
}
if (rc) {
curopcodes = NULL;
msg_perr("failed\n");
return 1;
} else {
curopcodes = curopcodes_done;
msg_pdbg("done\n");
return 0;
}
}
static int ich7_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data, int maxdata)
{
int write_cmd = 0;
int timeout;
uint32_t temp32 = 0;
uint16_t temp16;
uint32_t a;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
/* Programm Offset in Flash into FADDR */
REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF)); /* SPI addresses are 24 BIT only */
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0)) {
temp32 = 0;
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = 0;
}
temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8);
if ((a % 4) == 3) {
REGWRITE32(ICH7_REG_SPID0 + (a - (a % 4)),
temp32);
}
}
if (((a - 1) % 4) != 3) {
REGWRITE32(ICH7_REG_SPID0 +
((a - 1) - ((a - 1) % 4)), temp32);
}
}
/* Assemble SPIS */
temp16 = 0;
/* clear error status registers */
temp16 |= (SPIS_CDS + SPIS_FCERR);
REGWRITE16(ICH7_REG_SPIS, temp16);
/* Assemble SPIC */
temp16 = 0;
if (datalength != 0) {
temp16 |= SPIC_DS;
temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
}
/* Select opcode */
opmenu = REGREAD32(ICH7_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
/* Handle Atomic */
switch (op.atomic) {
case 2:
/* Select second preop. */
temp16 |= SPIC_SPOP;
/* And fall through. */
case 1:
/* Atomic command (preop+op) */
temp16 |= SPIC_ACS;
break;
}
/* Start */
temp16 |= SPIC_SCGO;
/* write it */
REGWRITE16(ICH7_REG_SPIC, temp16);
/* wait for cycle complete */
timeout = 100 * 1000 * 60; // 60s is a looong timeout.
while (((REGREAD16(ICH7_REG_SPIS) & SPIS_CDS) == 0) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout\n");
}
/* FIXME: make sure we do not needlessly cause transaction errors. */
if ((REGREAD16(ICH7_REG_SPIS) & SPIS_FCERR) != 0) {
msg_pdbg("Transaction error!\n");
return 1;
}
if ((!write_cmd) && (datalength != 0)) {
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = REGREAD32(ICH7_REG_SPID0 + (a));
}
data[a] =
(temp32 & (((uint32_t) 0xff) << ((a % 4) * 8)))
>> ((a % 4) * 8);
}
}
return 0;
}
static int ich9_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
int write_cmd = 0;
int timeout;
uint32_t temp32;
uint32_t a;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
/* Programm Offset in Flash into FADDR */
REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF)); /* SPI addresses are 24 BIT only */
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0)) {
temp32 = 0;
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = 0;
}
temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8);
if ((a % 4) == 3) {
REGWRITE32(ICH9_REG_FDATA0 + (a - (a % 4)),
temp32);
}
}
if (((a - 1) % 4) != 3) {
REGWRITE32(ICH9_REG_FDATA0 +
((a - 1) - ((a - 1) % 4)), temp32);
}
}
/* Assemble SSFS + SSFC */
temp32 = 0;
/* clear error status registers */
temp32 |= (SSFS_CDS + SSFS_FCERR);
/* Use 20 MHz */
temp32 |= SSFC_SCF_20MHZ;
if (datalength != 0) {
uint32_t datatemp;
temp32 |= SSFC_DS;
datatemp = ((uint32_t) ((datalength - 1) & 0x3f)) << (8 + 8);
temp32 |= datatemp;
}
/* Select opcode */
opmenu = REGREAD32(ICH9_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
/* Handle Atomic */
switch (op.atomic) {
case 2:
/* Select second preop. */
temp32 |= SSFC_SPOP;
/* And fall through. */
case 1:
/* Atomic command (preop+op) */
temp32 |= SSFC_ACS;
break;
}
/* Start */
temp32 |= SSFC_SCGO;
/* write it */
REGWRITE32(ICH9_REG_SSFS, temp32);
/*wait for cycle complete */
timeout = 100 * 1000 * 60; // 60s is a looong timeout.
while (((REGREAD32(ICH9_REG_SSFS) & SSFS_CDS) == 0) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout\n");
}
/* FIXME make sure we do not needlessly cause transaction errors. */
if ((REGREAD32(ICH9_REG_SSFS) & SSFS_FCERR) != 0) {
msg_pdbg("Transaction error!\n");
return 1;
}
if ((!write_cmd) && (datalength != 0)) {
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = REGREAD32(ICH9_REG_FDATA0 + (a));
}
data[a] =
(temp32 & (((uint32_t) 0xff) << ((a % 4) * 8)))
>> ((a % 4) * 8);
}
}
return 0;
}
static int run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
switch (spi_controller) {
case SPI_CONTROLLER_VIA:
if (datalength > 16) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=16\n",
__func__, op.opcode, datalength);
return SPI_INVALID_LENGTH;
}
return ich7_run_opcode(op, offset, datalength, data, 16);
case SPI_CONTROLLER_ICH7:
if (datalength > 64) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=16\n",
__func__, op.opcode, datalength);
return SPI_INVALID_LENGTH;
}
return ich7_run_opcode(op, offset, datalength, data, 64);
case SPI_CONTROLLER_ICH9:
if (datalength > 64) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=16\n",
__func__, op.opcode, datalength);
return SPI_INVALID_LENGTH;
}
return ich9_run_opcode(op, offset, datalength, data);
default:
msg_perr("%s: unsupported chipset\n", __func__);
}
/* If we ever get here, something really weird happened */
return -1;
}
int ich_spi_read(struct flashchip *flash, uint8_t * buf, int start, int len)
{
int maxdata = 64;
if (spi_controller == SPI_CONTROLLER_VIA)
maxdata = 16;
return spi_read_chunked(flash, buf, start, len, maxdata);
}
int ich_spi_write_256(struct flashchip *flash, uint8_t * buf)
{
int i, ret = 0;
int total_size = flash->total_size * 1024;
int erase_size = 64 * 1024;
int maxdata = 64;
if (spi_controller == SPI_CONTROLLER_VIA)
maxdata = 16;
spi_disable_blockprotect();
/* Erase first */
msg_pinfo("Erasing flash before programming... ");
if (erase_flash(flash)) {
msg_perr("ERASE FAILED!\n");
return -1;
}
msg_pinfo("done.\n");
msg_pinfo("Programming page: \n");
for (i = 0; i < total_size / erase_size; i++) {
ret = spi_write_chunked(flash, buf + (i * erase_size),
i * erase_size, erase_size, maxdata);
if (ret)
break;
}
msg_pinfo("\n");
return ret;
}
int ich_spi_send_command(unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
int result;
int opcode_index = -1;
const unsigned char cmd = *writearr;
OPCODE *opcode;
uint32_t addr = 0;
uint8_t *data;
int count;
/* find cmd in opcodes-table */
opcode_index = find_opcode(curopcodes, cmd);
if (opcode_index == -1) {
/* FIXME: Reprogram opcodes if possible. Autodetect type of
* opcode by checking readcnt/writecnt.
*/
msg_pdbg("Invalid OPCODE 0x%02x\n", cmd);
return SPI_INVALID_OPCODE;
}
opcode = &(curopcodes->opcode[opcode_index]);
/* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
(writecnt != 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =4\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
(writecnt != 1)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =1\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
(writecnt < 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
(readcnt)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got readcnt=%i, want =0\n", __func__, cmd,
readcnt);
return SPI_INVALID_LENGTH;
}
/* if opcode-type requires an address */
if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
addr = (writearr[1] << 16) |
(writearr[2] << 8) | (writearr[3] << 0);
}
/* translate read/write array/count */
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
data = (uint8_t *) (writearr + 1);
count = writecnt - 1;
} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
data = (uint8_t *) (writearr + 4);
count = writecnt - 4;
} else {
data = (uint8_t *) readarr;
count = readcnt;
}
result = run_opcode(*opcode, addr, count, data);
if (result) {
msg_pdbg("run OPCODE 0x%02x failed\n", opcode->opcode);
}
return result;
}
int ich_spi_send_multicommand(struct spi_command *cmds)
{
int ret = 0;
int i;
int oppos, preoppos;
for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
/* Next command is valid. */
preoppos = find_preop(curopcodes, cmds->writearr[0]);
oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
if ((oppos == -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES, but next command is not
* listed as opcode in that struct.
* Check for command sanity, then
* try to reprogram the ICH opcode list.
*/
if (find_preop(curopcodes,
(cmds + 1)->writearr[0]) != -1) {
msg_perr("%s: Two subsequent "
"preopcodes 0x%02x and 0x%02x, "
"ignoring the first.\n",
__func__, cmds->writearr[0],
(cmds + 1)->writearr[0]);
continue;
}
/* If the chipset is locked down, we'll fail
* during execution of the next command anyway.
* No need to bother with fixups.
*/
if (!ichspi_lock) {
msg_pdbg("%s: FIXME: Add on-the-fly"
" reprogramming of the "
"chipset opcode list.\n",
__func__);
/* FIXME: Reprogram opcode menu.
* Find a less-useful opcode, replace it
* with the wanted opcode, detect optype
* and reprogram the opcode menu.
* Update oppos so the next if-statement
* can do something useful.
*/
//curopcodes.opcode[lessusefulindex] = (cmds + 1)->writearr[0]);
//update_optypes(curopcodes);
//program_opcodes(curopcodes);
//oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
continue;
}
}
if ((oppos != -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES and next command is listed
* as opcode in that struct. Match them up.
*/
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
/* If none of the above if-statements about oppos or
* preoppos matched, this is a normal opcode.
*/
}
ret = ich_spi_send_command(cmds->writecnt, cmds->readcnt,
cmds->writearr, cmds->readarr);
/* Reset the type of all opcodes to non-atomic. */
for (i = 0; i < 8; i++)
curopcodes->opcode[i].atomic = 0;
}
return ret;
}