| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com> |
| * Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com> |
| * Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com> |
| * Copyright (C) 2008 coresystems GmbH <info@coresystems.de> |
| * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /* |
| * This module is designed for supporting the devices |
| * ST M25P40 |
| * ST M25P80 |
| * ST M25P16 |
| * ST M25P32 already tested |
| * ST M25P64 |
| * AT 25DF321 already tested |
| * ... and many more SPI flash devices |
| * |
| */ |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| |
| #include <string.h> |
| #include "flash.h" |
| #include "chipdrivers.h" |
| #include "programmer.h" |
| #include "spi.h" |
| |
| /* ICH9 controller register definition */ |
| #define ICH9_REG_HSFS 0x04 /* 16 Bits Hardware Sequencing Flash Status */ |
| #define HSFS_FDONE_OFF 0 /* 0: Flash Cycle Done */ |
| #define HSFS_FDONE (0x1 << HSFS_FDONE_OFF) |
| #define HSFS_FCERR_OFF 1 /* 1: Flash Cycle Error */ |
| #define HSFS_FCERR (0x1 << HSFS_FCERR_OFF) |
| #define HSFS_AEL_OFF 2 /* 2: Access Error Log */ |
| #define HSFS_AEL (0x1 << HSFS_AEL_OFF) |
| #define HSFS_BERASE_OFF 3 /* 3-4: Block/Sector Erase Size */ |
| #define HSFS_BERASE (0x3 << HSFS_BERASE_OFF) |
| #define HSFS_SCIP_OFF 5 /* 5: SPI Cycle In Progress */ |
| #define HSFS_SCIP (0x1 << HSFS_SCIP_OFF) |
| /* 6-12: reserved */ |
| #define HSFS_FDOPSS_OFF 13 /* 13: Flash Descriptor Override Pin-Strap Status */ |
| #define HSFS_FDOPSS (0x1 << HSFS_FDOPSS_OFF) |
| #define HSFS_FDV_OFF 14 /* 14: Flash Descriptor Valid */ |
| #define HSFS_FDV (0x1 << HSFS_FDV_OFF) |
| #define HSFS_FLOCKDN_OFF 15 /* 15: Flash Configuration Lock-Down */ |
| #define HSFS_FLOCKDN (0x1 << HSFS_FLOCKDN_OFF) |
| |
| #define ICH9_REG_HSFC 0x06 /* 16 Bits Hardware Sequencing Flash Control */ |
| #define HSFC_FGO_OFF 0 /* 0: Flash Cycle Go */ |
| #define HSFC_FGO (0x1 << HSFC_FGO_OFF) |
| #define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */ |
| #define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF) |
| /* 3-7: reserved */ |
| #define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */ |
| #define HSFC_FDBC (0x3f << HSFC_FDBC_OFF) |
| /* 14: reserved */ |
| #define HSFC_SME_OFF 15 /* 15: SPI SMI# Enable */ |
| #define HSFC_SME (0x1 << HSFC_SME_OFF) |
| |
| #define ICH9_REG_FADDR 0x08 /* 32 Bits */ |
| #define ICH9_REG_FDATA0 0x10 /* 64 Bytes */ |
| |
| #define ICH9_REG_FRAP 0x50 /* 32 Bytes Flash Region Access Permissions */ |
| #define ICH9_REG_FREG0 0x54 /* 32 Bytes Flash Region 0 */ |
| |
| #define ICH9_REG_PR0 0x74 /* 32 Bytes Protected Range 0 */ |
| #define ICH9_REG_PR1 0x78 /* 32 Bytes Protected Range 1 */ |
| #define ICH9_REG_PR2 0x7c /* 32 Bytes Protected Range 2 */ |
| #define ICH9_REG_PR3 0x80 /* 32 Bytes Protected Range 3 */ |
| #define ICH9_REG_PR4 0x84 /* 32 Bytes Protected Range 4 */ |
| |
| #define ICH9_REG_SSFS 0x90 /* 08 Bits */ |
| #define SSFS_SCIP_OFF 0 /* SPI Cycle In Progress */ |
| #define SSFS_SCIP (0x1 << SSFS_SCIP_OFF) |
| #define SSFS_FDONE_OFF 2 /* Cycle Done Status */ |
| #define SSFS_FDONE (0x1 << SSFS_FDONE_OFF) |
| #define SSFS_FCERR_OFF 3 /* Flash Cycle Error */ |
| #define SSFS_FCERR (0x1 << SSFS_FCERR_OFF) |
| #define SSFS_AEL_OFF 4 /* Access Error Log */ |
| #define SSFS_AEL (0x1 << SSFS_AEL_OFF) |
| /* The following bits are reserved in SSFS: 1,5-7. */ |
| #define SSFS_RESERVED_MASK 0x000000e2 |
| |
| #define ICH9_REG_SSFC 0x91 /* 24 Bits */ |
| /* We combine SSFS and SSFC to one 32-bit word, |
| * therefore SSFC bits are off by 8. */ |
| /* 0: reserved */ |
| #define SSFC_SCGO_OFF (1 + 8) /* 1: SPI Cycle Go */ |
| #define SSFC_SCGO (0x1 << SSFC_SCGO_OFF) |
| #define SSFC_ACS_OFF (2 + 8) /* 2: Atomic Cycle Sequence */ |
| #define SSFC_ACS (0x1 << SSFC_ACS_OFF) |
| #define SSFC_SPOP_OFF (3 + 8) /* 3: Sequence Prefix Opcode Pointer */ |
| #define SSFC_SPOP (0x1 << SSFC_SPOP_OFF) |
| #define SSFC_COP_OFF (4 + 8) /* 4-6: Cycle Opcode Pointer */ |
| #define SSFC_COP (0x7 << SSFC_COP_OFF) |
| /* 7: reserved */ |
| #define SSFC_DBC_OFF (8 + 8) /* 8-13: Data Byte Count */ |
| #define SSFC_DBC (0x3f << SSFC_DBC_OFF) |
| #define SSFC_DS_OFF (14 + 8) /* 14: Data Cycle */ |
| #define SSFC_DS (0x1 << SSFC_DS_OFF) |
| #define SSFC_SME_OFF (15 + 8) /* 15: SPI SMI# Enable */ |
| #define SSFC_SME (0x1 << SSFC_SME_OFF) |
| #define SSFC_SCF_OFF (16 + 8) /* 16-18: SPI Cycle Frequency */ |
| #define SSFC_SCF (0x7 << SSFC_SCF_OFF) |
| #define SSFC_SCF_20MHZ 0x00000000 |
| #define SSFC_SCF_33MHZ 0x01000000 |
| /* 19-23: reserved */ |
| #define SSFC_RESERVED_MASK 0xf8008100 |
| |
| #define ICH9_REG_PREOP 0x94 /* 16 Bits */ |
| #define ICH9_REG_OPTYPE 0x96 /* 16 Bits */ |
| #define ICH9_REG_OPMENU 0x98 /* 64 Bits */ |
| |
| #define ICH9_REG_BBAR 0xA0 /* 32 Bits BIOS Base Address Configuration */ |
| #define BBAR_MASK 0x00ffff00 /* 8-23: Bottom of System Flash */ |
| |
| #define ICH9_REG_FPB 0xD0 /* 32 Bits Flash Partition Boundary */ |
| #define FPB_FPBA_OFF 0 /* 0-12: Block/Sector Erase Size */ |
| #define FPB_FPBA (0x1FFF << FPB_FPBA_OFF) |
| |
| // ICH9R SPI commands |
| #define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0 |
| #define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1 |
| #define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2 |
| #define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3 |
| |
| // ICH7 registers |
| #define ICH7_REG_SPIS 0x00 /* 16 Bits */ |
| #define SPIS_SCIP 0x0001 |
| #define SPIS_GRANT 0x0002 |
| #define SPIS_CDS 0x0004 |
| #define SPIS_FCERR 0x0008 |
| #define SPIS_RESERVED_MASK 0x7ff0 |
| |
| /* VIA SPI is compatible with ICH7, but maxdata |
| to transfer is 16 bytes. |
| |
| DATA byte count on ICH7 is 8:13, on VIA 8:11 |
| |
| bit 12 is port select CS0 CS1 |
| bit 13 is FAST READ enable |
| bit 7 is used with fast read and one shot controls CS de-assert? |
| */ |
| |
| #define ICH7_REG_SPIC 0x02 /* 16 Bits */ |
| #define SPIC_SCGO 0x0002 |
| #define SPIC_ACS 0x0004 |
| #define SPIC_SPOP 0x0008 |
| #define SPIC_DS 0x4000 |
| |
| #define ICH7_REG_SPIA 0x04 /* 32 Bits */ |
| #define ICH7_REG_SPID0 0x08 /* 64 Bytes */ |
| #define ICH7_REG_PREOP 0x54 /* 16 Bits */ |
| #define ICH7_REG_OPTYPE 0x56 /* 16 Bits */ |
| #define ICH7_REG_OPMENU 0x58 /* 64 Bits */ |
| |
| /* ICH SPI configuration lock-down. May be set during chipset enabling. */ |
| static int ichspi_lock = 0; |
| |
| uint32_t ichspi_bbar = 0; |
| |
| static void *ich_spibar = NULL; |
| |
| typedef struct _OPCODE { |
| uint8_t opcode; //This commands spi opcode |
| uint8_t spi_type; //This commands spi type |
| uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1 |
| } OPCODE; |
| |
| /* Suggested opcode definition: |
| * Preop 1: Write Enable |
| * Preop 2: Write Status register enable |
| * |
| * OP 0: Write address |
| * OP 1: Read Address |
| * OP 2: ERASE block |
| * OP 3: Read Status register |
| * OP 4: Read ID |
| * OP 5: Write Status register |
| * OP 6: chip private (read JEDEC id) |
| * OP 7: Chip erase |
| */ |
| typedef struct _OPCODES { |
| uint8_t preop[2]; |
| OPCODE opcode[8]; |
| } OPCODES; |
| |
| static OPCODES *curopcodes = NULL; |
| |
| /* HW access functions */ |
| static uint32_t REGREAD32(int X) |
| { |
| return mmio_readl(ich_spibar + X); |
| } |
| |
| static uint16_t REGREAD16(int X) |
| { |
| return mmio_readw(ich_spibar + X); |
| } |
| |
| static uint16_t REGREAD8(int X) |
| { |
| return mmio_readb(ich_spibar + X); |
| } |
| |
| #define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off)) |
| #define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off)) |
| #define REGWRITE8(off, val) mmio_writeb(val, ich_spibar+(off)) |
| |
| /* Common SPI functions */ |
| static int find_opcode(OPCODES *op, uint8_t opcode); |
| static int find_preop(OPCODES *op, uint8_t preop); |
| static int generate_opcodes(OPCODES * op); |
| static int program_opcodes(OPCODES *op, int enable_undo); |
| static int run_opcode(OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data); |
| |
| /* for pairing opcodes with their required preop */ |
| struct preop_opcode_pair { |
| uint8_t preop; |
| uint8_t opcode; |
| }; |
| |
| /* List of opcodes which need preopcodes and matching preopcodes. Unused. */ |
| const struct preop_opcode_pair pops[] = { |
| {JEDEC_WREN, JEDEC_BYTE_PROGRAM}, |
| {JEDEC_WREN, JEDEC_SE}, /* sector erase */ |
| {JEDEC_WREN, JEDEC_BE_52}, /* block erase */ |
| {JEDEC_WREN, JEDEC_BE_D8}, /* block erase */ |
| {JEDEC_WREN, JEDEC_CE_60}, /* chip erase */ |
| {JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */ |
| /* FIXME: WRSR requires either EWSR or WREN depending on chip type. */ |
| {JEDEC_WREN, JEDEC_WRSR}, |
| {JEDEC_EWSR, JEDEC_WRSR}, |
| {0,} |
| }; |
| |
| /* Reasonable default configuration. Needs ad-hoc modifications if we |
| * encounter unlisted opcodes. Fun. |
| */ |
| static OPCODES O_ST_M25P = { |
| { |
| JEDEC_WREN, |
| JEDEC_EWSR, |
| }, |
| { |
| {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte |
| {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data |
| {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector |
| {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg |
| {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature |
| {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register |
| {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID |
| {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase |
| } |
| }; |
| |
| /* List of opcodes with their corresponding spi_type |
| * It is used to reprogram the chipset OPCODE table on-the-fly if an opcode |
| * is needed which is currently not in the chipset OPCODE table |
| */ |
| static OPCODE POSSIBLE_OPCODES[] = { |
| {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte |
| {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data |
| {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector |
| {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg |
| {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature |
| {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register |
| {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID |
| {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase |
| {JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase |
| {JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase |
| {JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment |
| }; |
| |
| static OPCODES O_EXISTING = {}; |
| |
| /* pretty printing functions */ |
| static void pretty_print_opcodes(OPCODES *ops) |
| { |
| if(ops == NULL) |
| return; |
| |
| msg_pdbg("preop0=0x%02x, preop1=0x%02x\n", ops->preop[0], |
| ops->preop[1]); |
| |
| OPCODE oc; |
| uint8_t i; |
| for (i = 0; i < 8; i++) { |
| oc = ops->opcode[i]; |
| msg_pdbg("op[%d]=0x%02x, %d, %d\n", |
| i, |
| oc.opcode, |
| oc.spi_type, |
| oc.atomic); |
| } |
| } |
| |
| #define pprint_reg(reg, bit, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & reg##_##bit)>>reg##_##bit##_OFF) |
| |
| static void prettyprint_ich9_reg_hsfs(uint16_t reg_val) |
| { |
| msg_pdbg("HSFS: "); |
| pprint_reg(HSFS, FDONE, reg_val, ", "); |
| pprint_reg(HSFS, FCERR, reg_val, ", "); |
| pprint_reg(HSFS, AEL, reg_val, ", "); |
| pprint_reg(HSFS, BERASE, reg_val, ", "); |
| pprint_reg(HSFS, SCIP, reg_val, ", "); |
| pprint_reg(HSFS, FDOPSS, reg_val, ", "); |
| pprint_reg(HSFS, FDV, reg_val, ", "); |
| pprint_reg(HSFS, FLOCKDN, reg_val, "\n"); |
| } |
| |
| static void prettyprint_ich9_reg_hsfc(uint16_t reg_val) |
| { |
| msg_pdbg("HSFC: "); |
| pprint_reg(HSFC, FGO, reg_val, ", "); |
| pprint_reg(HSFC, FCYCLE, reg_val, ", "); |
| pprint_reg(HSFC, FDBC, reg_val, ", "); |
| pprint_reg(HSFC, SME, reg_val, "\n"); |
| } |
| |
| static void prettyprint_ich9_reg_ssfs(uint32_t reg_val) |
| { |
| msg_pdbg("SSFS: "); |
| pprint_reg(SSFS, SCIP, reg_val, ", "); |
| pprint_reg(SSFS, FDONE, reg_val, ", "); |
| pprint_reg(SSFS, FCERR, reg_val, ", "); |
| pprint_reg(SSFS, AEL, reg_val, "\n"); |
| } |
| |
| static void prettyprint_ich9_reg_ssfc(uint32_t reg_val) |
| { |
| msg_pdbg("SSFC: "); |
| pprint_reg(SSFC, SCGO, reg_val, ", "); |
| pprint_reg(SSFC, ACS, reg_val, ", "); |
| pprint_reg(SSFC, SPOP, reg_val, ", "); |
| pprint_reg(SSFC, COP, reg_val, ", "); |
| pprint_reg(SSFC, DBC, reg_val, ", "); |
| pprint_reg(SSFC, SME, reg_val, ", "); |
| pprint_reg(SSFC, SCF, reg_val, "\n"); |
| } |
| |
| static uint8_t lookup_spi_type(uint8_t opcode) |
| { |
| int a; |
| |
| for (a = 0; a < sizeof(POSSIBLE_OPCODES)/sizeof(POSSIBLE_OPCODES[0]); a++) { |
| if (POSSIBLE_OPCODES[a].opcode == opcode) |
| return POSSIBLE_OPCODES[a].spi_type; |
| } |
| |
| return 0xFF; |
| } |
| |
| static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt) |
| { |
| uint8_t spi_type; |
| |
| spi_type = lookup_spi_type(opcode); |
| if (spi_type > 3) { |
| /* Try to guess spi type from read/write sizes. |
| * The following valid writecnt/readcnt combinations exist: |
| * writecnt = 4, readcnt >= 0 |
| * writecnt = 1, readcnt >= 0 |
| * writecnt >= 4, readcnt = 0 |
| * writecnt >= 1, readcnt = 0 |
| * writecnt >= 1 is guaranteed for all commands. |
| */ |
| if (readcnt == 0) |
| /* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS |
| * or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data |
| * bytes are actual the address, they go to the bus anyhow |
| */ |
| spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; |
| else if (writecnt == 1) // and readcnt is > 0 |
| spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; |
| else if (writecnt == 4) // and readcnt is > 0 |
| spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; |
| // else we have an invalid case, will be handled below |
| } |
| if (spi_type <= 3) { |
| int oppos=2; // use original JEDEC_BE_D8 offset |
| curopcodes->opcode[oppos].opcode = opcode; |
| curopcodes->opcode[oppos].spi_type = spi_type; |
| program_opcodes(curopcodes, 0); |
| oppos = find_opcode(curopcodes, opcode); |
| msg_pdbg ("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos); |
| return oppos; |
| } |
| return -1; |
| } |
| |
| static int find_opcode(OPCODES *op, uint8_t opcode) |
| { |
| int a; |
| |
| for (a = 0; a < 8; a++) { |
| if (op->opcode[a].opcode == opcode) |
| return a; |
| } |
| |
| return -1; |
| } |
| |
| static int find_preop(OPCODES *op, uint8_t preop) |
| { |
| int a; |
| |
| for (a = 0; a < 2; a++) { |
| if (op->preop[a] == preop) |
| return a; |
| } |
| |
| return -1; |
| } |
| |
| /* Create a struct OPCODES based on what we find in the locked down chipset. */ |
| static int generate_opcodes(OPCODES * op) |
| { |
| int a; |
| uint16_t preop, optype; |
| uint32_t opmenu[2]; |
| |
| if (op == NULL) { |
| msg_perr("\n%s: null OPCODES pointer!\n", __func__); |
| return -1; |
| } |
| |
| switch (spi_programmer->type) { |
| case SPI_CONTROLLER_ICH7: |
| case SPI_CONTROLLER_VIA: |
| preop = REGREAD16(ICH7_REG_PREOP); |
| optype = REGREAD16(ICH7_REG_OPTYPE); |
| opmenu[0] = REGREAD32(ICH7_REG_OPMENU); |
| opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4); |
| break; |
| case SPI_CONTROLLER_ICH9: |
| preop = REGREAD16(ICH9_REG_PREOP); |
| optype = REGREAD16(ICH9_REG_OPTYPE); |
| opmenu[0] = REGREAD32(ICH9_REG_OPMENU); |
| opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4); |
| break; |
| default: |
| msg_perr("%s: unsupported chipset\n", __func__); |
| return -1; |
| } |
| |
| op->preop[0] = (uint8_t) preop; |
| op->preop[1] = (uint8_t) (preop >> 8); |
| |
| for (a = 0; a < 8; a++) { |
| op->opcode[a].spi_type = (uint8_t) (optype & 0x3); |
| optype >>= 2; |
| } |
| |
| for (a = 0; a < 4; a++) { |
| op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff); |
| opmenu[0] >>= 8; |
| } |
| |
| for (a = 4; a < 8; a++) { |
| op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff); |
| opmenu[1] >>= 8; |
| } |
| |
| /* No preopcodes used by default. */ |
| for (a = 0; a < 8; a++) |
| op->opcode[a].atomic = 0; |
| |
| return 0; |
| } |
| |
| static int program_opcodes(OPCODES *op, int enable_undo) |
| { |
| uint8_t a; |
| uint16_t preop, optype; |
| uint32_t opmenu[2]; |
| |
| /* Program Prefix Opcodes */ |
| /* 0:7 Prefix Opcode 1 */ |
| preop = (op->preop[0]); |
| /* 8:16 Prefix Opcode 2 */ |
| preop |= ((uint16_t) op->preop[1]) << 8; |
| |
| /* Program Opcode Types 0 - 7 */ |
| optype = 0; |
| for (a = 0; a < 8; a++) { |
| optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2); |
| } |
| |
| /* Program Allowable Opcodes 0 - 3 */ |
| opmenu[0] = 0; |
| for (a = 0; a < 4; a++) { |
| opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8); |
| } |
| |
| /*Program Allowable Opcodes 4 - 7 */ |
| opmenu[1] = 0; |
| for (a = 4; a < 8; a++) { |
| opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8); |
| } |
| |
| msg_pdbg("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]); |
| switch (spi_programmer->type) { |
| case SPI_CONTROLLER_ICH7: |
| case SPI_CONTROLLER_VIA: |
| /* Register undo only for enable_undo=1, i.e. first call. */ |
| if (enable_undo) { |
| rmmio_valw(ich_spibar + ICH7_REG_PREOP); |
| rmmio_valw(ich_spibar + ICH7_REG_OPTYPE); |
| rmmio_vall(ich_spibar + ICH7_REG_OPMENU); |
| rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4); |
| } |
| mmio_writew(preop, ich_spibar + ICH7_REG_PREOP); |
| mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE); |
| mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU); |
| mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4); |
| break; |
| case SPI_CONTROLLER_ICH9: |
| /* Register undo only for enable_undo=1, i.e. first call. */ |
| if (enable_undo) { |
| rmmio_valw(ich_spibar + ICH9_REG_PREOP); |
| rmmio_valw(ich_spibar + ICH9_REG_OPTYPE); |
| rmmio_vall(ich_spibar + ICH9_REG_OPMENU); |
| rmmio_vall(ich_spibar + ICH9_REG_OPMENU + 4); |
| } |
| mmio_writew(preop, ich_spibar + ICH9_REG_PREOP); |
| mmio_writew(optype, ich_spibar + ICH9_REG_OPTYPE); |
| mmio_writel(opmenu[0], ich_spibar + ICH9_REG_OPMENU); |
| mmio_writel(opmenu[1], ich_spibar + ICH9_REG_OPMENU + 4); |
| break; |
| default: |
| msg_perr("%s: unsupported chipset\n", __func__); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Try to set BBAR (BIOS Base Address Register), but read back the value in case |
| * it didn't stick. |
| */ |
| static void ich_set_bbar(uint32_t min_addr) |
| { |
| int bbar_off; |
| switch (spi_programmer->type) { |
| case SPI_CONTROLLER_ICH7: |
| case SPI_CONTROLLER_VIA: |
| bbar_off = 0x50; |
| break; |
| case SPI_CONTROLLER_ICH9: |
| bbar_off = ICH9_REG_BBAR; |
| break; |
| default: |
| msg_perr("Unknown chipset for BBAR setting!\n"); |
| return; |
| } |
| |
| ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK; |
| if (ichspi_bbar) { |
| msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n", |
| ichspi_bbar); |
| } |
| min_addr &= BBAR_MASK; |
| ichspi_bbar |= min_addr; |
| rmmio_writel(ichspi_bbar, ich_spibar + bbar_off); |
| ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK; |
| |
| /* We don't have any option except complaining. And if the write |
| * failed, the restore will fail as well, so no problem there. |
| */ |
| if (ichspi_bbar != min_addr) |
| msg_perr("Setting BBAR failed!\n"); |
| } |
| |
| /* This function generates OPCODES from or programs OPCODES to ICH according to |
| * the chipset's SPI configuration lock. |
| * |
| * It should be called before ICH sends any spi command. |
| */ |
| static int ich_init_opcodes(void) |
| { |
| int rc = 0; |
| OPCODES *curopcodes_done; |
| |
| if (curopcodes) |
| return 0; |
| |
| if (ichspi_lock) { |
| msg_pdbg("Reading OPCODES... "); |
| curopcodes_done = &O_EXISTING; |
| rc = generate_opcodes(curopcodes_done); |
| } else { |
| msg_pdbg("Programming OPCODES... "); |
| curopcodes_done = &O_ST_M25P; |
| rc = program_opcodes(curopcodes_done, 1); |
| /* Technically not part of opcode init, but it allows opcodes |
| * to run without transaction errors by setting the lowest |
| * allowed address to zero. |
| */ |
| ich_set_bbar(0); |
| } |
| |
| if (rc) { |
| curopcodes = NULL; |
| msg_perr("failed\n"); |
| return 1; |
| } else { |
| curopcodes = curopcodes_done; |
| msg_pdbg("done\n"); |
| pretty_print_opcodes(curopcodes); |
| msg_pdbg("\n"); |
| return 0; |
| } |
| } |
| |
| static int ich7_run_opcode(OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data, int maxdata) |
| { |
| int write_cmd = 0; |
| int timeout; |
| uint32_t temp32 = 0; |
| uint16_t temp16; |
| uint32_t a; |
| uint64_t opmenu; |
| int opcode_index; |
| |
| /* Is it a write command? */ |
| if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) |
| || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) { |
| write_cmd = 1; |
| } |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("Error: SCIP never cleared!\n"); |
| return 1; |
| } |
| |
| /* Program offset in flash into SPIA while preserving reserved bits. */ |
| temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF; |
| REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32); |
| |
| /* Program data into SPID0 to N */ |
| if (write_cmd && (datalength != 0)) { |
| temp32 = 0; |
| for (a = 0; a < datalength; a++) { |
| if ((a % 4) == 0) { |
| temp32 = 0; |
| } |
| |
| temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8); |
| |
| if ((a % 4) == 3) { |
| REGWRITE32(ICH7_REG_SPID0 + (a - (a % 4)), |
| temp32); |
| } |
| } |
| if (((a - 1) % 4) != 3) { |
| REGWRITE32(ICH7_REG_SPID0 + |
| ((a - 1) - ((a - 1) % 4)), temp32); |
| } |
| |
| } |
| |
| /* Assemble SPIS */ |
| temp16 = REGREAD16(ICH7_REG_SPIS); |
| /* keep reserved bits */ |
| temp16 &= SPIS_RESERVED_MASK; |
| /* clear error status registers */ |
| temp16 |= (SPIS_CDS | SPIS_FCERR); |
| REGWRITE16(ICH7_REG_SPIS, temp16); |
| |
| /* Assemble SPIC */ |
| temp16 = 0; |
| |
| if (datalength != 0) { |
| temp16 |= SPIC_DS; |
| temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8; |
| } |
| |
| /* Select opcode */ |
| opmenu = REGREAD32(ICH7_REG_OPMENU); |
| opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32; |
| |
| for (opcode_index = 0; opcode_index < 8; opcode_index++) { |
| if ((opmenu & 0xff) == op.opcode) { |
| break; |
| } |
| opmenu >>= 8; |
| } |
| if (opcode_index == 8) { |
| msg_pdbg("Opcode %x not found.\n", op.opcode); |
| return 1; |
| } |
| temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4; |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| /* Handle Atomic. Atomic commands include three steps: |
| - sending the preop (mainly EWSR or WREN) |
| - sending the main command |
| - waiting for the busy bit (WIP) to be cleared |
| This means the timeout must be sufficient for chip erase |
| of slow high-capacity chips. |
| */ |
| switch (op.atomic) { |
| case 2: |
| /* Select second preop. */ |
| temp16 |= SPIC_SPOP; |
| /* And fall through. */ |
| case 1: |
| /* Atomic command (preop+op) */ |
| temp16 |= SPIC_ACS; |
| timeout = 100 * 1000 * 60; /* 60 seconds */ |
| break; |
| } |
| |
| /* Start */ |
| temp16 |= SPIC_SCGO; |
| |
| /* write it */ |
| REGWRITE16(ICH7_REG_SPIC, temp16); |
| |
| /* Wait for Cycle Done Status or Flash Cycle Error. */ |
| while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) && |
| --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n", |
| REGREAD16(ICH7_REG_SPIS)); |
| return 1; |
| } |
| |
| /* FIXME: make sure we do not needlessly cause transaction errors. */ |
| temp16 = REGREAD16(ICH7_REG_SPIS); |
| if (temp16 & SPIS_FCERR) { |
| msg_perr("Transaction error!\n"); |
| /* keep reserved bits */ |
| temp16 &= SPIS_RESERVED_MASK; |
| REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR); |
| return 1; |
| } |
| |
| if ((!write_cmd) && (datalength != 0)) { |
| for (a = 0; a < datalength; a++) { |
| if ((a % 4) == 0) { |
| temp32 = REGREAD32(ICH7_REG_SPID0 + (a)); |
| } |
| |
| data[a] = |
| (temp32 & (((uint32_t) 0xff) << ((a % 4) * 8))) |
| >> ((a % 4) * 8); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ich9_run_opcode(OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data) |
| { |
| int write_cmd = 0; |
| int timeout; |
| uint32_t temp32; |
| uint32_t a; |
| uint64_t opmenu; |
| int opcode_index; |
| |
| /* Is it a write command? */ |
| if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) |
| || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) { |
| write_cmd = 1; |
| } |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| while ((REGREAD8(ICH9_REG_SSFS) & SSFS_SCIP) && --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("Error: SCIP never cleared!\n"); |
| return 1; |
| } |
| |
| /* Program offset in flash into FADDR while preserve the reserved bits |
| * and clearing the 25. address bit which is only useable in hwseq. */ |
| temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF; |
| REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32); |
| |
| /* Program data into FDATA0 to N */ |
| if (write_cmd && (datalength != 0)) { |
| temp32 = 0; |
| for (a = 0; a < datalength; a++) { |
| if ((a % 4) == 0) { |
| temp32 = 0; |
| } |
| |
| temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8); |
| |
| if ((a % 4) == 3) { |
| REGWRITE32(ICH9_REG_FDATA0 + (a - (a % 4)), |
| temp32); |
| } |
| } |
| if (((a - 1) % 4) != 3) { |
| REGWRITE32(ICH9_REG_FDATA0 + |
| ((a - 1) - ((a - 1) % 4)), temp32); |
| } |
| } |
| |
| /* Assemble SSFS + SSFC */ |
| temp32 = REGREAD32(ICH9_REG_SSFS); |
| /* Keep reserved bits only */ |
| temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK; |
| /* Clear cycle done and cycle error status registers */ |
| temp32 |= (SSFS_FDONE | SSFS_FCERR); |
| REGWRITE32(ICH9_REG_SSFS, temp32); |
| |
| /* Use 20 MHz */ |
| temp32 |= SSFC_SCF_20MHZ; |
| |
| /* Set data byte count (DBC) and data cycle bit (DS) */ |
| if (datalength != 0) { |
| uint32_t datatemp; |
| temp32 |= SSFC_DS; |
| datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) & |
| SSFC_DBC); |
| temp32 |= datatemp; |
| } |
| |
| /* Select opcode */ |
| opmenu = REGREAD32(ICH9_REG_OPMENU); |
| opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32; |
| |
| for (opcode_index = 0; opcode_index < 8; opcode_index++) { |
| if ((opmenu & 0xff) == op.opcode) { |
| break; |
| } |
| opmenu >>= 8; |
| } |
| if (opcode_index == 8) { |
| msg_pdbg("Opcode %x not found.\n", op.opcode); |
| return 1; |
| } |
| temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4); |
| |
| timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */ |
| /* Handle Atomic. Atomic commands include three steps: |
| - sending the preop (mainly EWSR or WREN) |
| - sending the main command |
| - waiting for the busy bit (WIP) to be cleared |
| This means the timeout must be sufficient for chip erase |
| of slow high-capacity chips. |
| */ |
| switch (op.atomic) { |
| case 2: |
| /* Select second preop. */ |
| temp32 |= SSFC_SPOP; |
| /* And fall through. */ |
| case 1: |
| /* Atomic command (preop+op) */ |
| temp32 |= SSFC_ACS; |
| timeout = 100 * 1000 * 60; /* 60 seconds */ |
| break; |
| } |
| |
| /* Start */ |
| temp32 |= SSFC_SCGO; |
| |
| /* write it */ |
| REGWRITE32(ICH9_REG_SSFS, temp32); |
| |
| /* Wait for Cycle Done Status or Flash Cycle Error. */ |
| while (((REGREAD32(ICH9_REG_SSFS) & (SSFS_FDONE | SSFS_FCERR)) == 0) && |
| --timeout) { |
| programmer_delay(10); |
| } |
| if (!timeout) { |
| msg_perr("timeout, ICH9_REG_SSFS=0x%08x\n", |
| REGREAD32(ICH9_REG_SSFS)); |
| return 1; |
| } |
| |
| /* FIXME make sure we do not needlessly cause transaction errors. */ |
| temp32 = REGREAD32(ICH9_REG_SSFS); |
| if (temp32 & SSFS_FCERR) { |
| msg_perr("Transaction error!\n"); |
| prettyprint_ich9_reg_ssfs(temp32); |
| prettyprint_ich9_reg_ssfc(temp32); |
| /* keep reserved bits */ |
| temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK; |
| /* Clear the transaction error. */ |
| REGWRITE32(ICH9_REG_SSFS, temp32 | SSFS_FCERR); |
| return 1; |
| } |
| |
| if ((!write_cmd) && (datalength != 0)) { |
| for (a = 0; a < datalength; a++) { |
| if ((a % 4) == 0) { |
| temp32 = REGREAD32(ICH9_REG_FDATA0 + (a)); |
| } |
| |
| data[a] = |
| (temp32 & (((uint32_t) 0xff) << ((a % 4) * 8))) |
| >> ((a % 4) * 8); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int run_opcode(OPCODE op, uint32_t offset, |
| uint8_t datalength, uint8_t * data) |
| { |
| /* max_data_read == max_data_write for all Intel/VIA SPI masters */ |
| uint8_t maxlength = spi_programmer->max_data_read; |
| |
| if (spi_programmer->type == SPI_CONTROLLER_NONE) { |
| msg_perr("%s: unsupported chipset\n", __func__); |
| return -1; |
| } |
| |
| if (datalength > maxlength) { |
| msg_perr("%s: Internal command size error for " |
| "opcode 0x%02x, got datalength=%i, want <=%i\n", |
| __func__, op.opcode, datalength, maxlength); |
| return SPI_INVALID_LENGTH; |
| } |
| |
| switch (spi_programmer->type) { |
| case SPI_CONTROLLER_VIA: |
| case SPI_CONTROLLER_ICH7: |
| return ich7_run_opcode(op, offset, datalength, data, maxlength); |
| case SPI_CONTROLLER_ICH9: |
| return ich9_run_opcode(op, offset, datalength, data); |
| default: |
| /* If we ever get here, something really weird happened */ |
| return -1; |
| } |
| } |
| |
| static int ich_spi_send_command(unsigned int writecnt, unsigned int readcnt, |
| const unsigned char *writearr, unsigned char *readarr) |
| { |
| int result; |
| int opcode_index = -1; |
| const unsigned char cmd = *writearr; |
| OPCODE *opcode; |
| uint32_t addr = 0; |
| uint8_t *data; |
| int count; |
| |
| /* find cmd in opcodes-table */ |
| opcode_index = find_opcode(curopcodes, cmd); |
| if (opcode_index == -1) { |
| if (!ichspi_lock) |
| opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt); |
| if (opcode_index == -1) { |
| msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n", |
| cmd); |
| return SPI_INVALID_OPCODE; |
| } |
| } |
| |
| opcode = &(curopcodes->opcode[opcode_index]); |
| |
| /* The following valid writecnt/readcnt combinations exist: |
| * writecnt = 4, readcnt >= 0 |
| * writecnt = 1, readcnt >= 0 |
| * writecnt >= 4, readcnt = 0 |
| * writecnt >= 1, readcnt = 0 |
| * writecnt >= 1 is guaranteed for all commands. |
| */ |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) && |
| (writecnt != 4)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got writecnt=%i, want =4\n", __func__, cmd, |
| writecnt); |
| return SPI_INVALID_LENGTH; |
| } |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) && |
| (writecnt != 1)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got writecnt=%i, want =1\n", __func__, cmd, |
| writecnt); |
| return SPI_INVALID_LENGTH; |
| } |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) && |
| (writecnt < 4)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got writecnt=%i, want >=4\n", __func__, cmd, |
| writecnt); |
| return SPI_INVALID_LENGTH; |
| } |
| if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) || |
| (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) && |
| (readcnt)) { |
| msg_perr("%s: Internal command size error for opcode " |
| "0x%02x, got readcnt=%i, want =0\n", __func__, cmd, |
| readcnt); |
| return SPI_INVALID_LENGTH; |
| } |
| |
| /* if opcode-type requires an address */ |
| if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS || |
| opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) { |
| addr = (writearr[1] << 16) | |
| (writearr[2] << 8) | (writearr[3] << 0); |
| switch (spi_programmer->type) { |
| case SPI_CONTROLLER_ICH7: |
| case SPI_CONTROLLER_VIA: |
| case SPI_CONTROLLER_ICH9: |
| if (addr < ichspi_bbar) { |
| msg_perr("%s: Address 0x%06x below allowed " |
| "range 0x%06x-0xffffff\n", __func__, |
| addr, ichspi_bbar); |
| return SPI_INVALID_ADDRESS; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Translate read/write array/count. |
| * The maximum data length is identical for the maximum read length and |
| * for the maximum write length excluding opcode and address. Opcode and |
| * address are stored in separate registers, not in the data registers |
| * and are thus not counted towards data length. The only exception |
| * applies if the opcode definition (un)intentionally classifies said |
| * opcode incorrectly as non-address opcode or vice versa. */ |
| if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) { |
| data = (uint8_t *) (writearr + 1); |
| count = writecnt - 1; |
| } else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) { |
| data = (uint8_t *) (writearr + 4); |
| count = writecnt - 4; |
| } else { |
| data = (uint8_t *) readarr; |
| count = readcnt; |
| } |
| |
| result = run_opcode(*opcode, addr, count, data); |
| if (result) { |
| msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode); |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) || |
| (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) { |
| msg_pdbg("at address 0x%06x ", addr); |
| } |
| msg_pdbg("(payload length was %d).\n", count); |
| |
| /* Print out the data array if it contains data to write. |
| * Errors are detected before the received data is read back into |
| * the array so it won't make sense to print it then. */ |
| if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) || |
| (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) { |
| int i; |
| msg_pspew("The data was:\n"); |
| for(i=0; i<count; i++){ |
| msg_pspew("%3d: 0x%02x\n", i, data[i]); |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static int ich_spi_send_multicommand(struct spi_command *cmds) |
| { |
| int ret = 0; |
| int i; |
| int oppos, preoppos; |
| for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) { |
| if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) { |
| /* Next command is valid. */ |
| preoppos = find_preop(curopcodes, cmds->writearr[0]); |
| oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]); |
| if ((oppos == -1) && (preoppos != -1)) { |
| /* Current command is listed as preopcode in |
| * ICH struct OPCODES, but next command is not |
| * listed as opcode in that struct. |
| * Check for command sanity, then |
| * try to reprogram the ICH opcode list. |
| */ |
| if (find_preop(curopcodes, |
| (cmds + 1)->writearr[0]) != -1) { |
| msg_perr("%s: Two subsequent " |
| "preopcodes 0x%02x and 0x%02x, " |
| "ignoring the first.\n", |
| __func__, cmds->writearr[0], |
| (cmds + 1)->writearr[0]); |
| continue; |
| } |
| /* If the chipset is locked down, we'll fail |
| * during execution of the next command anyway. |
| * No need to bother with fixups. |
| */ |
| if (!ichspi_lock) { |
| oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt); |
| if (oppos == -1) |
| continue; |
| curopcodes->opcode[oppos].atomic = preoppos + 1; |
| continue; |
| } |
| } |
| if ((oppos != -1) && (preoppos != -1)) { |
| /* Current command is listed as preopcode in |
| * ICH struct OPCODES and next command is listed |
| * as opcode in that struct. Match them up. |
| */ |
| curopcodes->opcode[oppos].atomic = preoppos + 1; |
| continue; |
| } |
| /* If none of the above if-statements about oppos or |
| * preoppos matched, this is a normal opcode. |
| */ |
| } |
| ret = ich_spi_send_command(cmds->writecnt, cmds->readcnt, |
| cmds->writearr, cmds->readarr); |
| /* Reset the type of all opcodes to non-atomic. */ |
| for (i = 0; i < 8; i++) |
| curopcodes->opcode[i].atomic = 0; |
| } |
| return ret; |
| } |
| |
| #define ICH_BMWAG(x) ((x >> 24) & 0xff) |
| #define ICH_BMRAG(x) ((x >> 16) & 0xff) |
| #define ICH_BRWA(x) ((x >> 8) & 0xff) |
| #define ICH_BRRA(x) ((x >> 0) & 0xff) |
| |
| #define ICH_FREG_BASE(x) ((x >> 0) & 0x1fff) |
| #define ICH_FREG_LIMIT(x) ((x >> 16) & 0x1fff) |
| |
| static void do_ich9_spi_frap(uint32_t frap, int i) |
| { |
| static const char *const access_names[4] = { |
| "locked", "read-only", "write-only", "read-write" |
| }; |
| static const char *const region_names[5] = { |
| "Flash Descriptor", "BIOS", "Management Engine", |
| "Gigabit Ethernet", "Platform Data" |
| }; |
| uint32_t base, limit; |
| int rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) | |
| (((ICH_BRRA(frap) >> i) & 1) << 0); |
| int offset = ICH9_REG_FREG0 + i * 4; |
| uint32_t freg = mmio_readl(ich_spibar + offset); |
| |
| msg_pdbg("0x%02X: 0x%08x (FREG%i: %s)\n", |
| offset, freg, i, region_names[i]); |
| |
| base = ICH_FREG_BASE(freg); |
| limit = ICH_FREG_LIMIT(freg); |
| if (base > limit) { |
| /* this FREG is disabled */ |
| msg_pdbg("%s region is unused.\n", region_names[i]); |
| return; |
| } |
| |
| msg_pdbg("0x%08x-0x%08x is %s\n", |
| (base << 12), (limit << 12) | 0x0fff, |
| access_names[rwperms]); |
| } |
| |
| static const struct spi_programmer spi_programmer_ich7 = { |
| .type = SPI_CONTROLLER_ICH7, |
| .max_data_read = 64, |
| .max_data_write = 64, |
| .command = ich_spi_send_command, |
| .multicommand = ich_spi_send_multicommand, |
| .read = default_spi_read, |
| .write_256 = default_spi_write_256, |
| }; |
| |
| static const struct spi_programmer spi_programmer_ich9 = { |
| .type = SPI_CONTROLLER_ICH9, |
| .max_data_read = 64, |
| .max_data_write = 64, |
| .command = ich_spi_send_command, |
| .multicommand = ich_spi_send_multicommand, |
| .read = default_spi_read, |
| .write_256 = default_spi_write_256, |
| }; |
| |
| int ich_init_spi(struct pci_dev *dev, uint32_t base, void *rcrb, |
| int ich_generation) |
| { |
| int i; |
| uint8_t old, new; |
| uint16_t spibar_offset, tmp2; |
| uint32_t tmp; |
| |
| switch (ich_generation) { |
| case 7: |
| register_spi_programmer(&spi_programmer_ich7); |
| spibar_offset = 0x3020; |
| break; |
| case 8: |
| register_spi_programmer(&spi_programmer_ich9); |
| spibar_offset = 0x3020; |
| break; |
| case 9: |
| case 10: |
| default: /* Future version might behave the same */ |
| register_spi_programmer(&spi_programmer_ich9); |
| spibar_offset = 0x3800; |
| break; |
| } |
| |
| /* SPIBAR is at RCRB+0x3020 for ICH[78] and RCRB+0x3800 for ICH9. */ |
| msg_pdbg("SPIBAR = 0x%x + 0x%04x\n", base, spibar_offset); |
| |
| /* Assign Virtual Address */ |
| ich_spibar = rcrb + spibar_offset; |
| |
| switch (spi_programmer->type) { |
| case SPI_CONTROLLER_ICH7: |
| msg_pdbg("0x00: 0x%04x (SPIS)\n", |
| mmio_readw(ich_spibar + 0)); |
| msg_pdbg("0x02: 0x%04x (SPIC)\n", |
| mmio_readw(ich_spibar + 2)); |
| msg_pdbg("0x04: 0x%08x (SPIA)\n", |
| mmio_readl(ich_spibar + 4)); |
| for (i = 0; i < 8; i++) { |
| int offs; |
| offs = 8 + (i * 8); |
| msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4, |
| mmio_readl(ich_spibar + offs + 4), i); |
| } |
| ichspi_bbar = mmio_readl(ich_spibar + 0x50); |
| msg_pdbg("0x50: 0x%08x (BBAR)\n", |
| ichspi_bbar); |
| msg_pdbg("0x54: 0x%04x (PREOP)\n", |
| mmio_readw(ich_spibar + 0x54)); |
| msg_pdbg("0x56: 0x%04x (OPTYPE)\n", |
| mmio_readw(ich_spibar + 0x56)); |
| msg_pdbg("0x58: 0x%08x (OPMENU)\n", |
| mmio_readl(ich_spibar + 0x58)); |
| msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", |
| mmio_readl(ich_spibar + 0x5c)); |
| for (i = 0; i < 4; i++) { |
| int offs; |
| offs = 0x60 + (i * 4); |
| msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| } |
| if (mmio_readw(ich_spibar) & (1 << 15)) { |
| msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n"); |
| ichspi_lock = 1; |
| } |
| ich_init_opcodes(); |
| break; |
| case SPI_CONTROLLER_ICH9: |
| tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFS); |
| msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2); |
| prettyprint_ich9_reg_hsfs(tmp2); |
| if (tmp2 & HSFS_FLOCKDN) { |
| msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n"); |
| ichspi_lock = 1; |
| } |
| |
| tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFC); |
| msg_pdbg("0x06: 0x%04x (HSFC)\n", tmp2); |
| prettyprint_ich9_reg_hsfc(tmp2); |
| |
| tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP); |
| msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp); |
| msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp)); |
| msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp)); |
| msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp)); |
| msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp)); |
| |
| /* print out the FREGx registers along with FRAP access bits */ |
| for(i = 0; i < 5; i++) |
| do_ich9_spi_frap(tmp, i); |
| |
| msg_pdbg("0x74: 0x%08x (PR0)\n", |
| mmio_readl(ich_spibar + ICH9_REG_PR0)); |
| msg_pdbg("0x78: 0x%08x (PR1)\n", |
| mmio_readl(ich_spibar + ICH9_REG_PR1)); |
| msg_pdbg("0x7C: 0x%08x (PR2)\n", |
| mmio_readl(ich_spibar + ICH9_REG_PR2)); |
| msg_pdbg("0x80: 0x%08x (PR3)\n", |
| mmio_readl(ich_spibar + ICH9_REG_PR3)); |
| msg_pdbg("0x84: 0x%08x (PR4)\n", |
| mmio_readl(ich_spibar + ICH9_REG_PR4)); |
| |
| tmp = mmio_readl(ich_spibar + ICH9_REG_SSFS); |
| msg_pdbg("0x90: 0x%02x (SSFS)\n", tmp & 0xff); |
| prettyprint_ich9_reg_ssfs(tmp); |
| if (tmp & SSFS_FCERR) { |
| msg_pdbg("Clearing SSFS.FCERR\n"); |
| mmio_writeb(SSFS_FCERR, ich_spibar + ICH9_REG_SSFS); |
| } |
| msg_pdbg("0x91: 0x%06x (SSFC)\n", tmp >> 8); |
| prettyprint_ich9_reg_ssfc(tmp); |
| |
| msg_pdbg("0x94: 0x%04x (PREOP)\n", |
| mmio_readw(ich_spibar + ICH9_REG_PREOP)); |
| msg_pdbg("0x96: 0x%04x (OPTYPE)\n", |
| mmio_readw(ich_spibar + ICH9_REG_OPTYPE)); |
| msg_pdbg("0x98: 0x%08x (OPMENU)\n", |
| mmio_readl(ich_spibar + ICH9_REG_OPMENU)); |
| msg_pdbg("0x9C: 0x%08x (OPMENU+4)\n", |
| mmio_readl(ich_spibar + ICH9_REG_OPMENU + 4)); |
| ichspi_bbar = mmio_readl(ich_spibar + ICH9_REG_BBAR); |
| msg_pdbg("0xA0: 0x%08x (BBAR)\n", |
| ichspi_bbar); |
| tmp = mmio_readl(ich_spibar + ICH9_REG_FPB); |
| msg_pdbg("0xD0: 0x%08x (FPB)\n", tmp); |
| |
| ich_init_opcodes(); |
| break; |
| default: |
| /* Nothing */ |
| break; |
| } |
| |
| old = pci_read_byte(dev, 0xdc); |
| msg_pdbg("SPI Read Configuration: "); |
| new = (old >> 2) & 0x3; |
| switch (new) { |
| case 0: |
| case 1: |
| case 2: |
| msg_pdbg("prefetching %sabled, caching %sabled, ", |
| (new & 0x2) ? "en" : "dis", |
| (new & 0x1) ? "dis" : "en"); |
| break; |
| default: |
| msg_pdbg("invalid prefetching/caching settings, "); |
| break; |
| } |
| return 0; |
| } |
| |
| static const struct spi_programmer spi_programmer_via = { |
| .type = SPI_CONTROLLER_VIA, |
| .max_data_read = 16, |
| .max_data_write = 16, |
| .command = ich_spi_send_command, |
| .multicommand = ich_spi_send_multicommand, |
| .read = default_spi_read, |
| .write_256 = default_spi_write_256, |
| }; |
| |
| int via_init_spi(struct pci_dev *dev) |
| { |
| uint32_t mmio_base; |
| int i; |
| |
| mmio_base = (pci_read_long(dev, 0xbc)) << 8; |
| msg_pdbg("MMIO base at = 0x%x\n", mmio_base); |
| ich_spibar = physmap("VT8237S MMIO registers", mmio_base, 0x70); |
| |
| /* Not sure if it speaks all these bus protocols. */ |
| buses_supported = CHIP_BUSTYPE_LPC | CHIP_BUSTYPE_FWH; |
| register_spi_programmer(&spi_programmer_via); |
| |
| msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(ich_spibar + 0)); |
| msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(ich_spibar + 2)); |
| msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4)); |
| for (i = 0; i < 2; i++) { |
| int offs; |
| offs = 8 + (i * 8); |
| msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4, |
| mmio_readl(ich_spibar + offs + 4), i); |
| } |
| ichspi_bbar = mmio_readl(ich_spibar + 0x50); |
| msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar); |
| msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(ich_spibar + 0x54)); |
| msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(ich_spibar + 0x56)); |
| msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58)); |
| msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c)); |
| for (i = 0; i < 3; i++) { |
| int offs; |
| offs = 0x60 + (i * 4); |
| msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs, |
| mmio_readl(ich_spibar + offs), i); |
| } |
| msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n", |
| mmio_readw(ich_spibar + 0x6c)); |
| if (mmio_readw(ich_spibar) & (1 << 15)) { |
| msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n"); |
| ichspi_lock = 1; |
| } |
| |
| ich_init_opcodes(); |
| |
| return 0; |
| } |
| |
| #endif |