blob: 8c03e65745ee817e2c0428f83e0c9fa2eebc1eb7 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2004 Tyan Corp <yhlu@tyan.com>
* Copyright (C) 2005-2008 coresystems GmbH
* Copyright (C) 2008,2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <stdlib.h>
#include <getopt.h>
#include "flash.h"
#include "flashchips.h"
const char *flashrom_version = FLASHROM_VERSION;
char *chip_to_probe = NULL;
int verbose = 0;
#if INTERNAL_SUPPORT == 1
enum programmer programmer = PROGRAMMER_INTERNAL;
#elif DUMMY_SUPPORT == 1
enum programmer programmer = PROGRAMMER_DUMMY;
#else
/* Activating the #error explodes on make dep. */
//#error Neither internal nor dummy selected
#endif
char *programmer_param = NULL;
/**
* flashrom defaults to Parallel/LPC/FWH flash devices. If a known host
* controller is found, the init routine sets the buses_supported bitfield to
* contain the supported buses for that controller.
*/
enum chipbustype buses_supported = CHIP_BUSTYPE_NONSPI;
/**
* Programmers supporting multiple buses can have differing size limits on
* each bus. Store the limits for each bus in a common struct.
*/
struct decode_sizes max_rom_decode = {
.parallel = 0xffffffff,
.lpc = 0xffffffff,
.fwh = 0xffffffff,
.spi = 0xffffffff
};
const struct programmer_entry programmer_table[] = {
#if INTERNAL_SUPPORT == 1
{
.name = "internal",
.init = internal_init,
.shutdown = internal_shutdown,
.map_flash_region = physmap,
.unmap_flash_region = physunmap,
.chip_readb = internal_chip_readb,
.chip_readw = internal_chip_readw,
.chip_readl = internal_chip_readl,
.chip_readn = internal_chip_readn,
.chip_writeb = internal_chip_writeb,
.chip_writew = internal_chip_writew,
.chip_writel = internal_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if DUMMY_SUPPORT == 1
{
.name = "dummy",
.init = dummy_init,
.shutdown = dummy_shutdown,
.map_flash_region = dummy_map,
.unmap_flash_region = dummy_unmap,
.chip_readb = dummy_chip_readb,
.chip_readw = dummy_chip_readw,
.chip_readl = dummy_chip_readl,
.chip_readn = dummy_chip_readn,
.chip_writeb = dummy_chip_writeb,
.chip_writew = dummy_chip_writew,
.chip_writel = dummy_chip_writel,
.chip_writen = dummy_chip_writen,
.delay = internal_delay,
},
#endif
#if NIC3COM_SUPPORT == 1
{
.name = "nic3com",
.init = nic3com_init,
.shutdown = nic3com_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = nic3com_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = nic3com_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if GFXNVIDIA_SUPPORT == 1
{
.name = "gfxnvidia",
.init = gfxnvidia_init,
.shutdown = gfxnvidia_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = gfxnvidia_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = gfxnvidia_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if DRKAISER_SUPPORT == 1
{
.name = "drkaiser",
.init = drkaiser_init,
.shutdown = drkaiser_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = drkaiser_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = drkaiser_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if SATASII_SUPPORT == 1
{
.name = "satasii",
.init = satasii_init,
.shutdown = satasii_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = satasii_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = satasii_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if INTERNAL_SUPPORT == 1
{
.name = "it87spi",
.init = it87spi_init,
.shutdown = noop_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = noop_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = noop_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if FT2232_SPI_SUPPORT == 1
{
.name = "ft2232spi",
.init = ft2232_spi_init,
.shutdown = noop_shutdown, /* Missing shutdown */
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = noop_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = noop_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
#if SERPROG_SUPPORT == 1
{
.name = "serprog",
.init = serprog_init,
.shutdown = serprog_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = serprog_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = serprog_chip_readn,
.chip_writeb = serprog_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = serprog_delay,
},
#endif
#if BUSPIRATE_SPI_SUPPORT == 1
{
.name = "buspiratespi",
.init = buspirate_spi_init,
.shutdown = buspirate_spi_shutdown,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.chip_readb = noop_chip_readb,
.chip_readw = fallback_chip_readw,
.chip_readl = fallback_chip_readl,
.chip_readn = fallback_chip_readn,
.chip_writeb = noop_chip_writeb,
.chip_writew = fallback_chip_writew,
.chip_writel = fallback_chip_writel,
.chip_writen = fallback_chip_writen,
.delay = internal_delay,
},
#endif
{}, /* This entry corresponds to PROGRAMMER_INVALID. */
};
int programmer_init(void)
{
return programmer_table[programmer].init();
}
int programmer_shutdown(void)
{
return programmer_table[programmer].shutdown();
}
void *programmer_map_flash_region(const char *descr, unsigned long phys_addr,
size_t len)
{
return programmer_table[programmer].map_flash_region(descr,
phys_addr, len);
}
void programmer_unmap_flash_region(void *virt_addr, size_t len)
{
programmer_table[programmer].unmap_flash_region(virt_addr, len);
}
void chip_writeb(uint8_t val, chipaddr addr)
{
programmer_table[programmer].chip_writeb(val, addr);
}
void chip_writew(uint16_t val, chipaddr addr)
{
programmer_table[programmer].chip_writew(val, addr);
}
void chip_writel(uint32_t val, chipaddr addr)
{
programmer_table[programmer].chip_writel(val, addr);
}
void chip_writen(uint8_t *buf, chipaddr addr, size_t len)
{
programmer_table[programmer].chip_writen(buf, addr, len);
}
uint8_t chip_readb(const chipaddr addr)
{
return programmer_table[programmer].chip_readb(addr);
}
uint16_t chip_readw(const chipaddr addr)
{
return programmer_table[programmer].chip_readw(addr);
}
uint32_t chip_readl(const chipaddr addr)
{
return programmer_table[programmer].chip_readl(addr);
}
void chip_readn(uint8_t *buf, chipaddr addr, size_t len)
{
programmer_table[programmer].chip_readn(buf, addr, len);
}
void programmer_delay(int usecs)
{
programmer_table[programmer].delay(usecs);
}
void map_flash_registers(struct flashchip *flash)
{
size_t size = flash->total_size * 1024;
/* Flash registers live 4 MByte below the flash. */
/* FIXME: This is incorrect for nonstandard flashbase. */
flash->virtual_registers = (chipaddr)programmer_map_flash_region("flash chip registers", (0xFFFFFFFF - 0x400000 - size + 1), size);
}
int read_memmapped(struct flashchip *flash, uint8_t *buf, int start, int len)
{
chip_readn(buf, flash->virtual_memory + start, len);
return 0;
}
unsigned long flashbase = 0;
int min(int a, int b)
{
return (a < b) ? a : b;
}
int max(int a, int b)
{
return (a > b) ? a : b;
}
int bitcount(unsigned long a)
{
int i = 0;
for (; a != 0; a >>= 1)
if (a & 1)
i++;
return i;
}
char *strcat_realloc(char *dest, const char *src)
{
dest = realloc(dest, strlen(dest) + strlen(src) + 1);
if (!dest)
return NULL;
strcat(dest, src);
return dest;
}
/* This is a somewhat hacked function similar in some ways to strtok().
* It will look for needle in haystack, return a copy of needle and remove
* everything from the first occurrence of needle to the next delimiter
* from haystack.
*/
char *extract_param(char **haystack, char *needle, char *delim)
{
char *param_pos, *rest, *tmp;
char *dev = NULL;
int devlen;
param_pos = strstr(*haystack, needle);
do {
if (!param_pos)
return NULL;
/* Beginning of the string? */
if (param_pos == *haystack)
break;
/* After a delimiter? */
if (strchr(delim, *(param_pos - 1)))
break;
/* Continue searching. */
param_pos++;
param_pos = strstr(param_pos, needle);
} while (1);
if (param_pos) {
param_pos += strlen(needle);
devlen = strcspn(param_pos, delim);
if (devlen) {
dev = malloc(devlen + 1);
if (!dev) {
fprintf(stderr, "Out of memory!\n");
exit(1);
}
strncpy(dev, param_pos, devlen);
dev[devlen] = '\0';
}
rest = param_pos + devlen;
rest += strspn(rest, delim);
param_pos -= strlen(needle);
memmove(param_pos, rest, strlen(rest) + 1);
tmp = realloc(*haystack, strlen(*haystack) + 1);
if (!tmp) {
fprintf(stderr, "Out of memory!\n");
exit(1);
}
*haystack = tmp;
}
return dev;
}
/* start is an offset to the base address of the flash chip */
int check_erased_range(struct flashchip *flash, int start, int len)
{
int ret;
uint8_t *cmpbuf = malloc(len);
if (!cmpbuf) {
fprintf(stderr, "Could not allocate memory!\n");
exit(1);
}
memset(cmpbuf, 0xff, len);
ret = verify_range(flash, cmpbuf, start, len, "ERASE");
free(cmpbuf);
return ret;
}
/**
* @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the
flash content at location start
* @start offset to the base address of the flash chip
* @len length of the verified area
* @message string to print in the "FAILED" message
* @return 0 for success, -1 for failure
*/
int verify_range(struct flashchip *flash, uint8_t *cmpbuf, int start, int len, char *message)
{
int i, j, starthere, lenhere, ret = 0;
int page_size = flash->page_size;
uint8_t *readbuf = malloc(page_size);
int failcount = 0;
if (!len)
goto out_free;
if (!flash->read) {
fprintf(stderr, "ERROR: flashrom has no read function for this flash chip.\n");
return 1;
}
if (!readbuf) {
fprintf(stderr, "Could not allocate memory!\n");
exit(1);
}
if (start + len > flash->total_size * 1024) {
fprintf(stderr, "Error: %s called with start 0x%x + len 0x%x >"
" total_size 0x%x\n", __func__, start, len,
flash->total_size * 1024);
ret = -1;
goto out_free;
}
if (!message)
message = "VERIFY";
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each page with at least one affected
* byte. The lowest page number is (start / page_size) since that
* division rounds down. The highest page number we want is the page
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest page number is
* (start + len - 1) / page_size. Since we want to include that last
* page as well, the loop condition uses <=.
*/
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
/* Byte position of the first byte in the range in this page. */
starthere = max(start, i * page_size);
/* Length of bytes in the range in this page. */
lenhere = min(start + len, (i + 1) * page_size) - starthere;
flash->read(flash, readbuf, starthere, lenhere);
for (j = 0; j < lenhere; j++) {
if (cmpbuf[starthere - start + j] != readbuf[j]) {
/* Only print the first failure. */
if (!failcount++)
fprintf(stderr, "%s FAILED at 0x%08x! "
"Expected=0x%02x, Read=0x%02x,",
message, starthere + j,
cmpbuf[starthere - start + j],
readbuf[j]);
}
}
}
if (failcount) {
fprintf(stderr, " failed byte count from 0x%08x-0x%08x: 0x%x\n",
start, start + len - 1, failcount);
ret = -1;
}
out_free:
free(readbuf);
return ret;
}
/* This function generates various test patterns useful for testing controller
* and chip communication as well as chip behaviour.
*
* If a byte can be written multiple times, each time keeping 0-bits at 0
* and changing 1-bits to 0 if the new value for that bit is 0, the effect
* is essentially an AND operation. That's also the reason why this function
* provides the result of AND between various patterns.
*
* Below is a list of patterns (and their block length).
* Pattern 0 is 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5 (16 Bytes)
* Pattern 1 is 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa (16 Bytes)
* Pattern 2 is 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f (16 Bytes)
* Pattern 3 is a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af (16 Bytes)
* Pattern 4 is 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 (16 Bytes)
* Pattern 5 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f (16 Bytes)
* Pattern 6 is 00 (1 Byte)
* Pattern 7 is ff (1 Byte)
* Patterns 0-7 have a big-endian block number in the last 2 bytes of each 256
* byte block.
*
* Pattern 8 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11... (256 B)
* Pattern 9 is ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef ee... (256 B)
* Pattern 10 is 00 00 00 01 00 02 00 03 00 04... (128 kB big-endian counter)
* Pattern 11 is ff ff ff fe ff fd ff fc ff fb... (128 kB big-endian downwards)
* Pattern 12 is 00 (1 Byte)
* Pattern 13 is ff (1 Byte)
* Patterns 8-13 have no block number.
*
* Patterns 0-3 are created to detect and efficiently diagnose communication
* slips like missed bits or bytes and their repetitive nature gives good visual
* cues to the person inspecting the results. In addition, the following holds:
* AND Pattern 0/1 == Pattern 4
* AND Pattern 2/3 == Pattern 5
* AND Pattern 0/1/2/3 == AND Pattern 4/5 == Pattern 6
* A weakness of pattern 0-5 is the inability to detect swaps/copies between
* any two 16-byte blocks except for the last 16-byte block in a 256-byte bloc.
* They work perfectly for detecting any swaps/aliasing of blocks >= 256 bytes.
* 0x5 and 0xa were picked because they are 0101 and 1010 binary.
* Patterns 8-9 are best for detecting swaps/aliasing of blocks < 256 bytes.
* Besides that, they provide for bit testing of the last two bytes of every
* 256 byte block which contains the block number for patterns 0-6.
* Patterns 10-11 are special purpose for detecting subblock aliasing with
* block sizes >256 bytes (some Dataflash chips etc.)
* AND Pattern 8/9 == Pattern 12
* AND Pattern 10/11 == Pattern 12
* Pattern 13 is the completely erased state.
* None of the patterns can detect aliasing at boundaries which are a multiple
* of 16 MBytes (but such chips do not exist anyway for Parallel/LPC/FWH/SPI).
*/
int generate_testpattern(uint8_t *buf, uint32_t size, int variant)
{
int i;
if (!buf) {
fprintf(stderr, "Invalid buffer!\n");
return 1;
}
switch (variant) {
case 0:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4 | 0x5;
break;
case 1:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4 | 0xa;
break;
case 2:
for (i = 0; i < size; i++)
buf[i] = 0x50 | (i & 0xf);
break;
case 3:
for (i = 0; i < size; i++)
buf[i] = 0xa0 | (i & 0xf);
break;
case 4:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4;
break;
case 5:
for (i = 0; i < size; i++)
buf[i] = i & 0xf;
break;
case 6:
memset(buf, 0x00, size);
break;
case 7:
memset(buf, 0xff, size);
break;
case 8:
for (i = 0; i < size; i++)
buf[i] = i & 0xff;
break;
case 9:
for (i = 0; i < size; i++)
buf[i] = ~(i & 0xff);
break;
case 10:
for (i = 0; i < size % 2; i++) {
buf[i * 2] = (i >> 8) & 0xff;
buf[i * 2 + 1] = i & 0xff;
}
if (size & 0x1)
buf[i * 2] = (i >> 8) & 0xff;
break;
case 11:
for (i = 0; i < size % 2; i++) {
buf[i * 2] = ~((i >> 8) & 0xff);
buf[i * 2 + 1] = ~(i & 0xff);
}
if (size & 0x1)
buf[i * 2] = ~((i >> 8) & 0xff);
break;
case 12:
memset(buf, 0x00, size);
break;
case 13:
memset(buf, 0xff, size);
break;
}
if ((variant >= 0) && (variant <= 7)) {
/* Write block number in the last two bytes of each 256-byte
* block, big endian for easier reading of the hexdump.
* Note that this wraps around for chips larger than 2^24 bytes
* (16 MB).
*/
for (i = 0; i < size / 256; i++) {
buf[i * 256 + 254] = (i >> 8) & 0xff;
buf[i * 256 + 255] = i & 0xff;
}
}
return 0;
}
int check_max_decode(enum chipbustype buses, uint32_t size)
{
int limitexceeded = 0;
if ((buses & CHIP_BUSTYPE_PARALLEL) &&
(max_rom_decode.parallel < size)) {
limitexceeded++;
printf_debug("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.parallel / 1024, "Parallel");
}
if ((buses & CHIP_BUSTYPE_LPC) && (max_rom_decode.lpc < size)) {
limitexceeded++;
printf_debug("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.lpc / 1024, "LPC");
}
if ((buses & CHIP_BUSTYPE_FWH) && (max_rom_decode.fwh < size)) {
limitexceeded++;
printf_debug("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.fwh / 1024, "FWH");
}
if ((buses & CHIP_BUSTYPE_SPI) && (max_rom_decode.spi < size)) {
limitexceeded++;
printf_debug("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.spi / 1024, "SPI");
}
if (!limitexceeded)
return 0;
/* Sometimes chip and programmer have more than one bus in common,
* and the limit is not exceeded on all buses. Tell the user.
*/
if (bitcount(buses) > limitexceeded)
printf_debug("There is at least one common chip/programmer "
"interface which can support a chip of this size. "
"You can try --force at your own risk.\n");
return 1;
}
struct flashchip *probe_flash(struct flashchip *first_flash, int force)
{
struct flashchip *flash;
unsigned long base = 0;
uint32_t size;
enum chipbustype buses_common;
char *tmp;
for (flash = first_flash; flash && flash->name; flash++) {
if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0)
continue;
printf_debug("Probing for %s %s, %d KB: ",
flash->vendor, flash->name, flash->total_size);
if (!flash->probe && !force) {
printf_debug("failed! flashrom has no probe function for this flash chip.\n");
continue;
}
buses_common = buses_supported & flash->bustype;
if (!buses_common) {
tmp = flashbuses_to_text(buses_supported);
printf_debug("skipped. Host bus type %s ", tmp);
free(tmp);
tmp = flashbuses_to_text(flash->bustype);
printf_debug("and chip bus type %s are incompatible.\n", tmp);
free(tmp);
continue;
}
size = flash->total_size * 1024;
check_max_decode(buses_common, size);
base = flashbase ? flashbase : (0xffffffff - size + 1);
flash->virtual_memory = (chipaddr)programmer_map_flash_region("flash chip", base, size);
if (force)
break;
if (flash->probe(flash) != 1)
goto notfound;
if (first_flash == flashchips
|| flash->model_id != GENERIC_DEVICE_ID)
break;
notfound:
programmer_unmap_flash_region((void *)flash->virtual_memory, size);
}
if (!flash || !flash->name)
return NULL;
printf("Found chip \"%s %s\" (%d KB, %s) at physical address 0x%lx.\n",
flash->vendor, flash->name, flash->total_size,
flashbuses_to_text(flash->bustype), base);
return flash;
}
int verify_flash(struct flashchip *flash, uint8_t *buf)
{
int ret;
int total_size = flash->total_size * 1024;
printf("Verifying flash... ");
ret = verify_range(flash, buf, 0, total_size, NULL);
if (!ret)
printf("VERIFIED. \n");
return ret;
}
int read_flash(struct flashchip *flash, char *filename)
{
unsigned long numbytes;
FILE *image;
unsigned long size = flash->total_size * 1024;
unsigned char *buf = calloc(size, sizeof(char));
if (!filename) {
printf("Error: No filename specified.\n");
return 1;
}
if ((image = fopen(filename, "w")) == NULL) {
perror(filename);
exit(1);
}
printf("Reading flash... ");
if (!flash->read) {
printf("FAILED!\n");
fprintf(stderr, "ERROR: flashrom has no read function for this flash chip.\n");
return 1;
} else
flash->read(flash, buf, 0, size);
numbytes = fwrite(buf, 1, size, image);
fclose(image);
free(buf);
printf("%s.\n", numbytes == size ? "done" : "FAILED");
if (numbytes != size)
return 1;
return 0;
}
int erase_flash(struct flashchip *flash)
{
int i, j, k, ret = 0, found = 0;
unsigned int start, len;
printf("Erasing flash chip... ");
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
unsigned int done = 0;
struct block_eraser eraser = flash->block_erasers[k];
printf_debug("Looking at blockwise erase function %i... ", k);
if (!eraser.block_erase && !eraser.eraseblocks[0].count) {
printf_debug("not defined. "
"Looking for another erase function.\n");
continue;
}
if (!eraser.block_erase && eraser.eraseblocks[0].count) {
printf_debug("eraseblock layout is known, but no "
"matching block erase function found. "
"Looking for another erase function.\n");
continue;
}
if (eraser.block_erase && !eraser.eraseblocks[0].count) {
printf_debug("block erase function found, but "
"eraseblock layout is unknown. "
"Looking for another erase function.\n");
continue;
}
found = 1;
printf_debug("trying... ");
for (i = 0; i < NUM_ERASEREGIONS; i++) {
/* Blocks with zero size are bugs in flashchips.c.
* FIXME: This check should be performed on startup.
*/
if (eraser.eraseblocks[i].count &&
!eraser.eraseblocks[i].size) {
fprintf(stderr, "ERROR: Erase region with size "
"0 for this chip. Please report a bug "
"at flashrom@flashrom.org\n");
ret = 1;
break;
}
/* count==0 for all automatically initialized array
* members so the loop below won't be executed for them.
*/
for (j = 0; j < eraser.eraseblocks[i].count; j++) {
start = done + eraser.eraseblocks[i].size * j;
len = eraser.eraseblocks[i].size;
printf_debug("0x%06x-0x%06x, ", start,
start + len - 1);
ret = eraser.block_erase(flash, start, len);
if (ret)
break;
}
if (ret)
break;
done += eraser.eraseblocks[i].count *
eraser.eraseblocks[i].size;
}
printf_debug("\n");
if (done != flash->total_size * 1024)
fprintf(stderr, "ERROR: Erase region walking erased "
"0x%06x bytes total, expected 0x%06x bytes.",
done, flash->total_size * 1024);
/* If everything is OK, don't try another erase function. */
if (!ret)
break;
}
/* If no block erase function was found or block erase failed, retry. */
if ((!found || ret) && (flash->erase)) {
found = 1;
printf_debug("Trying whole-chip erase function... ");
ret = flash->erase(flash);
}
if (!found) {
fprintf(stderr, "ERROR: flashrom has no erase function for this flash chip.\n");
return 1;
}
if (ret) {
fprintf(stderr, "FAILED!\n");
} else {
printf("SUCCESS.\n");
}
return ret;
}
void emergency_help_message(void)
{
fprintf(stderr, "Your flash chip is in an unknown state.\n"
"Get help on IRC at irc.freenode.net (channel #flashrom) or\n"
"mail flashrom@flashrom.org!\n--------------------"
"-----------------------------------------------------------\n"
"DO NOT REBOOT OR POWEROFF!\n");
}
void usage(const char *name)
{
const char *pname;
int pnamelen;
int remaining = 0;
enum programmer p;
printf("usage: %s [-VfLzhR] [-E|-r file|-w file|-v file] [-c chipname]\n"
" [-m [vendor:]part] [-l file] [-i image] [-p programmer]\n\n", name);
printf("Please note that the command line interface for flashrom will "
"change before\nflashrom 1.0. Do not use flashrom in scripts "
"or other automated tools without\nchecking that your flashrom"
" version won't interpret options in a different way.\n\n");
printf
(" -r | --read: read flash and save into file\n"
" -w | --write: write file into flash\n"
" -v | --verify: verify flash against file\n"
" -n | --noverify: don't verify flash against file\n"
" -E | --erase: erase flash device\n"
" -V | --verbose: more verbose output\n"
" -c | --chip <chipname>: probe only for specified flash chip\n"
#if INTERNAL_SUPPORT == 1
" -m | --mainboard <[vendor:]part>: override mainboard settings\n"
#endif
" -f | --force: force write without checking image\n"
" -l | --layout <file.layout>: read ROM layout from file\n"
" -i | --image <name>: only flash image name from flash layout\n"
" -L | --list-supported: print supported devices\n"
#if PRINT_WIKI_SUPPORT == 1
" -z | --list-supported-wiki: print supported devices in wiki syntax\n"
#endif
" -p | --programmer <name>: specify the programmer device");
for (p = 0; p < PROGRAMMER_INVALID; p++) {
pname = programmer_table[p].name;
pnamelen = strlen(pname);
if (remaining - pnamelen - 2 < 0) {
printf("\n ");
remaining = 43;
} else {
printf(" ");
remaining--;
}
if (p == 0) {
printf("(");
remaining--;
}
printf("%s", pname);
remaining -= pnamelen;
if (p < PROGRAMMER_INVALID - 1) {
printf(",");
remaining--;
} else {
printf(")\n");
}
}
printf(
" -h | --help: print this help text\n"
" -R | --version: print the version (release)\n"
"\nYou can specify one of -E, -r, -w, -v or no operation. If no operation is\n"
"specified, then all that happens is that flash info is dumped.\n\n");
exit(1);
}
void print_version(void)
{
printf("flashrom v%s\n", flashrom_version);
}
int main(int argc, char *argv[])
{
uint8_t *buf;
unsigned long size, numbytes;
FILE *image;
/* Probe for up to three flash chips. */
struct flashchip *flash, *flashes[3];
const char *name;
int namelen;
int opt;
int option_index = 0;
int force = 0;
int read_it = 0, write_it = 0, erase_it = 0, verify_it = 0;
int dont_verify_it = 0, list_supported = 0;
#if PRINT_WIKI_SUPPORT == 1
int list_supported_wiki = 0;
#endif
int operation_specified = 0;
int ret = 0, i;
#if PRINT_WIKI_SUPPORT == 1
const char *optstring = "rRwvnVEfc:m:l:i:p:Lzh";
#else
const char *optstring = "rRwvnVEfc:m:l:i:p:Lh";
#endif
static struct option long_options[] = {
{"read", 0, 0, 'r'},
{"write", 0, 0, 'w'},
{"erase", 0, 0, 'E'},
{"verify", 0, 0, 'v'},
{"noverify", 0, 0, 'n'},
{"chip", 1, 0, 'c'},
{"mainboard", 1, 0, 'm'},
{"verbose", 0, 0, 'V'},
{"force", 0, 0, 'f'},
{"layout", 1, 0, 'l'},
{"image", 1, 0, 'i'},
{"list-supported", 0, 0, 'L'},
#if PRINT_WIKI_SUPPORT == 1
{"list-supported-wiki", 0, 0, 'z'},
#endif
{"programmer", 1, 0, 'p'},
{"help", 0, 0, 'h'},
{"version", 0, 0, 'R'},
{0, 0, 0, 0}
};
char *filename = NULL;
char *tempstr = NULL;
print_version();
if (argc > 1) {
/* Yes, print them. */
int i;
printf_debug("The arguments are:\n");
for (i = 1; i < argc; ++i)
printf_debug("%s\n", argv[i]);
}
/* Safety check. */
if (ARRAY_SIZE(programmer_table) - 1 != PROGRAMMER_INVALID) {
fprintf(stderr, "Programmer table miscompilation!\n");
exit(1);
}
if (spi_programmer_count - 1 != SPI_CONTROLLER_INVALID) {
fprintf(stderr, "SPI programmer table miscompilation!\n");
exit(1);
}
#if BITBANG_SPI_SUPPORT == 1
if (bitbang_spi_master_count - 1 != BITBANG_SPI_INVALID) {
fprintf(stderr, "Bitbanging SPI master table miscompilation!\n");
exit(1);
}
#endif
setbuf(stdout, NULL);
while ((opt = getopt_long(argc, argv, optstring,
long_options, &option_index)) != EOF) {
switch (opt) {
case 'r':
if (++operation_specified > 1) {
fprintf(stderr, "More than one operation "
"specified. Aborting.\n");
exit(1);
}
read_it = 1;
break;
case 'w':
if (++operation_specified > 1) {
fprintf(stderr, "More than one operation "
"specified. Aborting.\n");
exit(1);
}
write_it = 1;
break;
case 'v':
//FIXME: gracefully handle superfluous -v
if (++operation_specified > 1) {
fprintf(stderr, "More than one operation "
"specified. Aborting.\n");
exit(1);
}
if (dont_verify_it) {
fprintf(stderr, "--verify and --noverify are"
"mutually exclusive. Aborting.\n");
exit(1);
}
verify_it = 1;
break;
case 'n':
if (verify_it) {
fprintf(stderr, "--verify and --noverify are"
"mutually exclusive. Aborting.\n");
exit(1);
}
dont_verify_it = 1;
break;
case 'c':
chip_to_probe = strdup(optarg);
break;
case 'V':
verbose = 1;
break;
case 'E':
if (++operation_specified > 1) {
fprintf(stderr, "More than one operation "
"specified. Aborting.\n");
exit(1);
}
erase_it = 1;
break;
#if INTERNAL_SUPPORT == 1
case 'm':
tempstr = strdup(optarg);
lb_vendor_dev_from_string(tempstr);
break;
#endif
case 'f':
force = 1;
break;
case 'l':
tempstr = strdup(optarg);
if (read_romlayout(tempstr))
exit(1);
break;
case 'i':
tempstr = strdup(optarg);
find_romentry(tempstr);
break;
case 'L':
list_supported = 1;
break;
#if PRINT_WIKI_SUPPORT == 1
case 'z':
list_supported_wiki = 1;
break;
#endif
case 'p':
for (programmer = 0; programmer < PROGRAMMER_INVALID; programmer++) {
name = programmer_table[programmer].name;
namelen = strlen(name);
if (strncmp(optarg, name, namelen) == 0) {
switch (optarg[namelen]) {
case ':':
programmer_param = strdup(optarg + namelen + 1);
break;
case '\0':
break;
default:
/* The continue refers to the
* for loop. It is here to be
* able to differentiate between
* foo and foobar.
*/
continue;
}
break;
}
}
if (programmer == PROGRAMMER_INVALID) {
printf("Error: Unknown programmer %s.\n", optarg);
exit(1);
}
break;
case 'R':
/* print_version() is always called during startup. */
exit(0);
break;
case 'h':
default:
usage(argv[0]);
break;
}
}
if (list_supported) {
print_supported();
exit(0);
}
#if PRINT_WIKI_SUPPORT == 1
if (list_supported_wiki) {
print_supported_wiki();
exit(0);
}
#endif
if (read_it && write_it) {
printf("Error: -r and -w are mutually exclusive.\n");
usage(argv[0]);
}
if (optind < argc)
filename = argv[optind++];
if (optind < argc) {
printf("Error: Extra parameter found.\n");
usage(argv[0]);
}
if (programmer_init()) {
fprintf(stderr, "Error: Programmer initialization failed.\n");
exit(1);
}
myusec_calibrate_delay();
for (i = 0; i < ARRAY_SIZE(flashes); i++) {
flashes[i] =
probe_flash(i ? flashes[i - 1] + 1 : flashchips, 0);
if (!flashes[i])
for (i++; i < ARRAY_SIZE(flashes); i++)
flashes[i] = NULL;
}
if (flashes[1]) {
printf("Multiple flash chips were detected:");
for (i = 0; i < ARRAY_SIZE(flashes) && flashes[i]; i++)
printf(" %s", flashes[i]->name);
printf("\nPlease specify which chip to use with the -c <chipname> option.\n");
programmer_shutdown();
exit(1);
} else if (!flashes[0]) {
printf("No EEPROM/flash device found.\n");
if (!force || !chip_to_probe) {
printf("If you know which flash chip you have, and if this version of flashrom\n");
printf("supports a similar flash chip, you can try to force read your chip. Run:\n");
printf("flashrom -f -r -c similar_supported_flash_chip filename\n");
printf("\n");
printf("Note: flashrom can never write when the flash chip isn't found automatically.\n");
}
if (force && read_it && chip_to_probe) {
printf("Force read (-f -r -c) requested, forcing chip probe success:\n");
flashes[0] = probe_flash(flashchips, 1);
if (!flashes[0]) {
printf("flashrom does not support a flash chip named '%s'.\n", chip_to_probe);
printf("Run flashrom -L to view the hardware supported in this flashrom version.\n");
exit(1);
}
printf("Please note that forced reads most likely contain garbage.\n");
return read_flash(flashes[0], filename);
}
// FIXME: flash writes stay enabled!
programmer_shutdown();
exit(1);
}
flash = flashes[0];
if (TEST_OK_MASK != (flash->tested & TEST_OK_MASK)) {
printf("===\n");
if (flash->tested & TEST_BAD_MASK) {
printf("This flash part has status NOT WORKING for operations:");
if (flash->tested & TEST_BAD_PROBE)
printf(" PROBE");
if (flash->tested & TEST_BAD_READ)
printf(" READ");
if (flash->tested & TEST_BAD_ERASE)
printf(" ERASE");
if (flash->tested & TEST_BAD_WRITE)
printf(" WRITE");
printf("\n");
}
if ((!(flash->tested & TEST_BAD_PROBE) && !(flash->tested & TEST_OK_PROBE)) ||
(!(flash->tested & TEST_BAD_READ) && !(flash->tested & TEST_OK_READ)) ||
(!(flash->tested & TEST_BAD_ERASE) && !(flash->tested & TEST_OK_ERASE)) ||
(!(flash->tested & TEST_BAD_WRITE) && !(flash->tested & TEST_OK_WRITE))) {
printf("This flash part has status UNTESTED for operations:");
if (!(flash->tested & TEST_BAD_PROBE) && !(flash->tested & TEST_OK_PROBE))
printf(" PROBE");
if (!(flash->tested & TEST_BAD_READ) && !(flash->tested & TEST_OK_READ))
printf(" READ");
if (!(flash->tested & TEST_BAD_ERASE) && !(flash->tested & TEST_OK_ERASE))
printf(" ERASE");
if (!(flash->tested & TEST_BAD_WRITE) && !(flash->tested & TEST_OK_WRITE))
printf(" WRITE");
printf("\n");
}
printf("Please email a report to flashrom@flashrom.org if any "
"of the above operations\nwork correctly for you with "
"this flash part. Please include the flashrom\noutput "
"with the additional -V option for all operations you "
"tested (-V, -rV,\n-wV, -EV), and mention which "
"mainboard or programmer you tested. Thanks for your "
"help!\n===\n");
}
size = flash->total_size * 1024;
if (check_max_decode((buses_supported & flash->bustype), size) &&
(!force)) {
fprintf(stderr, "Chip is too big for this programmer "
"(-V gives details). Use --force to override.\n");
programmer_shutdown();
return 1;
}
if (!(read_it | write_it | verify_it | erase_it)) {
printf("No operations were specified.\n");
// FIXME: flash writes stay enabled!
programmer_shutdown();
exit(1);
}
if (!filename && !erase_it) {
printf("Error: No filename specified.\n");
// FIXME: flash writes stay enabled!
programmer_shutdown();
exit(1);
}
/* Always verify write operations unless -n is used. */
if (write_it && !dont_verify_it)
verify_it = 1;
buf = (uint8_t *) calloc(size, sizeof(char));
if (erase_it) {
if (flash->tested & TEST_BAD_ERASE) {
fprintf(stderr, "Erase is not working on this chip. ");
if (!force) {
fprintf(stderr, "Aborting.\n");
programmer_shutdown();
return 1;
} else {
fprintf(stderr, "Continuing anyway.\n");
}
}
if (erase_flash(flash)) {
emergency_help_message();
programmer_shutdown();
return 1;
}
} else if (read_it) {
if (read_flash(flash, filename)) {
programmer_shutdown();
return 1;
}
} else {
struct stat image_stat;
if (flash->tested & TEST_BAD_ERASE) {
fprintf(stderr, "Erase is not working on this chip "
"and erase is needed for write. ");
if (!force) {
fprintf(stderr, "Aborting.\n");
programmer_shutdown();
return 1;
} else {
fprintf(stderr, "Continuing anyway.\n");
}
}
if (flash->tested & TEST_BAD_WRITE) {
fprintf(stderr, "Write is not working on this chip. ");
if (!force) {
fprintf(stderr, "Aborting.\n");
programmer_shutdown();
return 1;
} else {
fprintf(stderr, "Continuing anyway.\n");
}
}
if ((image = fopen(filename, "r")) == NULL) {
perror(filename);
programmer_shutdown();
exit(1);
}
if (fstat(fileno(image), &image_stat) != 0) {
perror(filename);
programmer_shutdown();
exit(1);
}
if (image_stat.st_size != flash->total_size * 1024) {
fprintf(stderr, "Error: Image size doesn't match\n");
programmer_shutdown();
exit(1);
}
numbytes = fread(buf, 1, size, image);
#if INTERNAL_SUPPORT == 1
show_id(buf, size, force);
#endif
fclose(image);
if (numbytes != size) {
fprintf(stderr, "Error: Failed to read file. Got %ld bytes, wanted %ld!\n", numbytes, size);
programmer_shutdown();
return 1;
}
}
// This should be moved into each flash part's code to do it
// cleanly. This does the job.
handle_romentries(buf, flash);
// ////////////////////////////////////////////////////////////
if (write_it) {
printf("Writing flash chip... ");
if (!flash->write) {
fprintf(stderr, "Error: flashrom has no write function for this flash chip.\n");
programmer_shutdown();
return 1;
}
ret = flash->write(flash, buf);
if (ret) {
fprintf(stderr, "FAILED!\n");
emergency_help_message();
programmer_shutdown();
return 1;
} else {
printf("COMPLETE.\n");
}
}
if (verify_it) {
/* Work around chips which need some time to calm down. */
if (write_it)
programmer_delay(1000*1000);
ret = verify_flash(flash, buf);
/* If we tried to write, and verification now fails, we
* might have an emergency situation.
*/
if (ret && write_it)
emergency_help_message();
}
programmer_shutdown();
return ret;
}