| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2009 Paul Fox <pgf@laptop.org> |
| * Copyright (C) 2009 Carl-Daniel Hailfinger |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include "flash.h" |
| #include "spi.h" |
| |
| #if FT2232_SPI_SUPPORT == 1 |
| |
| #include <ftdi.h> |
| |
| /* the 'H' chips can run internally at either 12Mhz or 60Mhz. |
| * the non-H chips can only run at 12Mhz. */ |
| #define CLOCK_5X 1 |
| |
| /* in either case, the divisor is a simple integer clock divider. |
| * if CLOCK_5X is set, this divisor divides 30Mhz, else it |
| * divides 6Mhz */ |
| #define DIVIDE_BY 3 // e.g. '3' will give either 10Mhz or 2Mhz spi clock |
| |
| |
| static struct ftdi_context ftdic_context; |
| |
| int send_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) |
| { |
| int r; |
| r = ftdi_write_data(ftdic, (unsigned char *) buf, size); |
| if (r < 0) { |
| fprintf(stderr, "ftdi_write_data: %d, %s\n", r, |
| ftdi_get_error_string(ftdic)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int get_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) |
| { |
| int r; |
| r = ftdi_read_data(ftdic, (unsigned char *) buf, size); |
| if (r < 0) { |
| fprintf(stderr, "ftdi_read_data: %d, %s\n", r, |
| ftdi_get_error_string(ftdic)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int ft2232_spi_init(void) |
| { |
| int f; |
| struct ftdi_context *ftdic = &ftdic_context; |
| unsigned char buf[512]; |
| unsigned char port_val = 0; |
| |
| |
| if (ftdi_init(ftdic) < 0) { |
| fprintf(stderr, "ftdi_init failed\n"); |
| return EXIT_FAILURE; |
| } |
| |
| // f = ftdi_usb_open(ftdic, 0x0403, 0x6010); // FT2232 |
| f = ftdi_usb_open(ftdic, 0x0403, 0x6011); // FT4232 |
| |
| if (f < 0 && f != -5) { |
| fprintf(stderr, "Unable to open ftdi device: %d (%s)\n", f, |
| ftdi_get_error_string(ftdic)); |
| exit(-1); |
| } |
| |
| if (ftdi_set_interface(ftdic, INTERFACE_B) < 0) { |
| fprintf(stderr, "Unable to select FT2232 channel B: %s\n", |
| ftdic->error_str); |
| } |
| |
| if (ftdi_usb_reset(ftdic) < 0) { |
| fprintf(stderr, "Unable to reset ftdi device\n"); |
| } |
| |
| if (ftdi_set_latency_timer(ftdic, 2) < 0) { |
| fprintf(stderr, "Unable to set latency timer\n"); |
| } |
| |
| if (ftdi_write_data_set_chunksize(ftdic, 512)) { |
| fprintf(stderr, "Unable to set chunk size\n"); |
| } |
| |
| if (ftdi_set_bitmode(ftdic, 0x00, 2) < 0) { |
| fprintf(stderr, "Unable to set bitmode\n"); |
| } |
| |
| #if CLOCK_5X |
| printf_debug("Disable divide-by-5 front stage\n"); |
| buf[0] = 0x8a; /* disable divide-by-5 */ |
| if (send_buf(ftdic, buf, 1)) |
| return -1; |
| #define MPSSE_CLK 60.0 |
| |
| #else |
| |
| #define MPSSE_CLK 12.0 |
| |
| #endif |
| printf_debug("Set clock divisor\n"); |
| buf[0] = 0x86; /* command "set divisor" */ |
| /* valueL/valueH are (desired_divisor - 1) */ |
| buf[1] = (DIVIDE_BY-1) & 0xff; |
| buf[2] = ((DIVIDE_BY-1) >> 8) & 0xff; |
| if (send_buf(ftdic, buf, 3)) |
| return -1; |
| |
| printf("SPI clock is %fMHz\n", |
| (double)(MPSSE_CLK / (((DIVIDE_BY-1) + 1) * 2))); |
| |
| /* Disconnect TDI/DO to TDO/DI for Loopback */ |
| printf_debug("No loopback of tdi/do tdo/di\n"); |
| buf[0] = 0x85; |
| if (send_buf(ftdic, buf, 1)) |
| return -1; |
| |
| printf_debug("Set data bits\n"); |
| /* Set data bits low-byte command: |
| * value: 0x08 CS=high, DI=low, DO=low, SK=low |
| * dir: 0x0b CS=output, DI=input, DO=output, SK=output |
| */ |
| #define CS_BIT 0x08 |
| |
| buf[0] = SET_BITS_LOW; |
| buf[1] = (port_val = CS_BIT); |
| buf[2] = 0x0b; |
| if (send_buf(ftdic, buf, 3)) |
| return -1; |
| |
| printf_debug("\nft2232 chosen\n"); |
| |
| buses_supported = CHIP_BUSTYPE_SPI; |
| spi_controller = SPI_CONTROLLER_FT2232; |
| |
| return 0; |
| } |
| |
| int ft2232_spi_command(unsigned int writecnt, unsigned int readcnt, |
| const unsigned char *writearr, unsigned char *readarr) |
| { |
| struct ftdi_context *ftdic = &ftdic_context; |
| static unsigned char *buf = NULL; |
| unsigned char port_val = 0; |
| int i, ret = 0; |
| |
| buf = realloc(buf, writecnt + readcnt + 100); |
| if (!buf) { |
| fprintf(stderr, "Out of memory!\n"); |
| exit(1); |
| } |
| |
| i = 0; |
| |
| /* minimize USB transfers by packing as many commands |
| * as possible together. if we're not expecting to |
| * read, we can assert CS, write, and deassert CS all |
| * in one shot. if reading, we do three separate |
| * operations. */ |
| printf_debug("Assert CS#\n"); |
| buf[i++] = SET_BITS_LOW; |
| buf[i++] = (port_val &= ~CS_BIT); |
| buf[i++] = 0x0b; |
| |
| if (writecnt) { |
| buf[i++] = 0x11; |
| buf[i++] = (writecnt - 1) & 0xff; |
| buf[i++] = ((writecnt - 1) >> 8) & 0xff; |
| memcpy(buf+i, writearr, writecnt); |
| i += writecnt; |
| } |
| |
| /* optionally terminate this batch of commands with a |
| * read command, then do the fetch of the results. |
| */ |
| if (readcnt) { |
| buf[i++] = 0x20; |
| buf[i++] = (readcnt - 1) & 0xff; |
| buf[i++] = ((readcnt - 1) >> 8) & 0xff; |
| ret = send_buf(ftdic, buf, i); |
| i = 0; |
| if (ret) goto deassert_cs; |
| |
| /* FIXME: This is unreliable. There's no guarantee that we read |
| * the response directly after sending the read command. |
| * We may be scheduled out etc. |
| */ |
| ret = get_buf(ftdic, readarr, readcnt); |
| |
| } |
| |
| deassert_cs: |
| printf_debug("De-assert CS#\n"); |
| buf[i++] = SET_BITS_LOW; |
| buf[i++] = (port_val |= CS_BIT); |
| buf[i++] = 0x0b; |
| if (send_buf(ftdic, buf, i)) |
| return -1; |
| |
| return ret; |
| } |
| |
| int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) |
| { |
| /* Maximum read length is 64k bytes. */ |
| return spi_read_chunked(flash, buf, start, len, 64 * 1024); |
| } |
| |
| int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf) |
| { |
| int total_size = 1024 * flash->total_size; |
| int i; |
| |
| printf_debug("total_size is %d\n", total_size); |
| for (i = 0; i < total_size; i += 256) { |
| int l, r; |
| if (i + 256 <= total_size) |
| l = 256; |
| else |
| l = total_size - i; |
| |
| spi_write_enable(); |
| if ((r = spi_nbyte_program(i, &buf[i], l))) { |
| fprintf(stderr, "%s: write fail %d\n", __FUNCTION__, r); |
| // spi_write_disable(); chip does this for us |
| return 1; |
| } |
| |
| while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) |
| /* loop */; |
| } |
| // spi_write_disable(); chip does this for us |
| |
| return 0; |
| } |
| |
| #else |
| int ft2232_spi_init(void) |
| { |
| fprintf(stderr, "FT2232 SPI support was not compiled in\n"); |
| exit(1); |
| } |
| |
| int ft2232_spi_command(unsigned int writecnt, unsigned int readcnt, |
| const unsigned char *writearr, unsigned char *readarr) |
| { |
| fprintf(stderr, "FT2232 SPI support was not compiled in\n"); |
| exit(1); |
| } |
| |
| int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) |
| { |
| fprintf(stderr, "FT2232 SPI support was not compiled in\n"); |
| exit(1); |
| } |
| |
| int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf) |
| { |
| fprintf(stderr, "FT2232 SPI support was not compiled in\n"); |
| exit(1); |
| } |
| #endif |