| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2000 Silicon Integrated System Corporation |
| * Copyright (C) 2004 Tyan Corp <yhlu@tyan.com> |
| * Copyright (C) 2005-2008 coresystems GmbH |
| * Copyright (C) 2008,2009 Carl-Daniel Hailfinger |
| * Copyright (C) 2016 secunet Security Networks AG |
| * (Written by Nico Huber <nico.huber@secunet.com> for secunet) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <stdio.h> |
| #include <sys/types.h> |
| #ifndef __LIBPAYLOAD__ |
| #include <fcntl.h> |
| #include <sys/stat.h> |
| #endif |
| #include <string.h> |
| #include <unistd.h> |
| #include <stdlib.h> |
| #include <errno.h> |
| #include <ctype.h> |
| #include <getopt.h> |
| #if HAVE_UTSNAME == 1 |
| #include <sys/utsname.h> |
| #endif |
| #include "flash.h" |
| #include "flashchips.h" |
| #include "programmer.h" |
| #include "hwaccess.h" |
| #include "chipdrivers.h" |
| |
| const char flashrom_version[] = FLASHROM_VERSION; |
| const char *chip_to_probe = NULL; |
| |
| static enum programmer programmer = PROGRAMMER_INVALID; |
| static const char *programmer_param = NULL; |
| |
| /* |
| * Programmers supporting multiple buses can have differing size limits on |
| * each bus. Store the limits for each bus in a common struct. |
| */ |
| struct decode_sizes max_rom_decode; |
| |
| /* If nonzero, used as the start address of bottom-aligned flash. */ |
| unsigned long flashbase; |
| |
| /* Is writing allowed with this programmer? */ |
| int programmer_may_write; |
| |
| const struct programmer_entry programmer_table[] = { |
| #if CONFIG_INTERNAL == 1 |
| { |
| .name = "internal", |
| .type = OTHER, |
| .devs.note = NULL, |
| .init = internal_init, |
| .map_flash_region = physmap, |
| .unmap_flash_region = physunmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_DUMMY == 1 |
| { |
| .name = "dummy", |
| .type = OTHER, |
| /* FIXME */ |
| .devs.note = "Dummy device, does nothing and logs all accesses\n", |
| .init = dummy_init, |
| .map_flash_region = dummy_map, |
| .unmap_flash_region = dummy_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_NIC3COM == 1 |
| { |
| .name = "nic3com", |
| .type = PCI, |
| .devs.dev = nics_3com, |
| .init = nic3com_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_NICREALTEK == 1 |
| { |
| /* This programmer works for Realtek RTL8139 and SMC 1211. */ |
| .name = "nicrealtek", |
| .type = PCI, |
| .devs.dev = nics_realtek, |
| .init = nicrealtek_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_NICNATSEMI == 1 |
| { |
| .name = "nicnatsemi", |
| .type = PCI, |
| .devs.dev = nics_natsemi, |
| .init = nicnatsemi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_GFXNVIDIA == 1 |
| { |
| .name = "gfxnvidia", |
| .type = PCI, |
| .devs.dev = gfx_nvidia, |
| .init = gfxnvidia_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_DRKAISER == 1 |
| { |
| .name = "drkaiser", |
| .type = PCI, |
| .devs.dev = drkaiser_pcidev, |
| .init = drkaiser_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_SATASII == 1 |
| { |
| .name = "satasii", |
| .type = PCI, |
| .devs.dev = satas_sii, |
| .init = satasii_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_ATAHPT == 1 |
| { |
| .name = "atahpt", |
| .type = PCI, |
| .devs.dev = ata_hpt, |
| .init = atahpt_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_ATAVIA == 1 |
| { |
| .name = "atavia", |
| .type = PCI, |
| .devs.dev = ata_via, |
| .init = atavia_init, |
| .map_flash_region = atavia_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_ATAPROMISE == 1 |
| { |
| .name = "atapromise", |
| .type = PCI, |
| .devs.dev = ata_promise, |
| .init = atapromise_init, |
| .map_flash_region = atapromise_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_IT8212 == 1 |
| { |
| .name = "it8212", |
| .type = PCI, |
| .devs.dev = devs_it8212, |
| .init = it8212_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_FT2232_SPI == 1 |
| { |
| .name = "ft2232_spi", |
| .type = USB, |
| .devs.dev = devs_ft2232spi, |
| .init = ft2232_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_SERPROG == 1 |
| { |
| .name = "serprog", |
| .type = OTHER, |
| /* FIXME */ |
| .devs.note = "All programmer devices speaking the serprog protocol\n", |
| .init = serprog_init, |
| .map_flash_region = serprog_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = serprog_delay, |
| }, |
| #endif |
| |
| #if CONFIG_BUSPIRATE_SPI == 1 |
| { |
| .name = "buspirate_spi", |
| .type = OTHER, |
| /* FIXME */ |
| .devs.note = "Dangerous Prototypes Bus Pirate\n", |
| .init = buspirate_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_DEDIPROG == 1 |
| { |
| .name = "dediprog", |
| .type = USB, |
| .devs.dev = devs_dediprog, |
| .init = dediprog_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_DEVELOPERBOX_SPI == 1 |
| { |
| .name = "developerbox", |
| .type = USB, |
| .devs.dev = devs_developerbox_spi, |
| .init = developerbox_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_RAYER_SPI == 1 |
| { |
| .name = "rayer_spi", |
| .type = OTHER, |
| /* FIXME */ |
| .devs.note = "RayeR parallel port programmer\n", |
| .init = rayer_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_PONY_SPI == 1 |
| { |
| .name = "pony_spi", |
| .type = OTHER, |
| /* FIXME */ |
| .devs.note = "Programmers compatible with SI-Prog, serbang or AJAWe\n", |
| .init = pony_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_NICINTEL == 1 |
| { |
| .name = "nicintel", |
| .type = PCI, |
| .devs.dev = nics_intel, |
| .init = nicintel_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_NICINTEL_SPI == 1 |
| { |
| .name = "nicintel_spi", |
| .type = PCI, |
| .devs.dev = nics_intel_spi, |
| .init = nicintel_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_NICINTEL_EEPROM == 1 |
| { |
| .name = "nicintel_eeprom", |
| .type = PCI, |
| .devs.dev = nics_intel_ee, |
| .init = nicintel_ee_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_OGP_SPI == 1 |
| { |
| .name = "ogp_spi", |
| .type = PCI, |
| .devs.dev = ogp_spi, |
| .init = ogp_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_SATAMV == 1 |
| { |
| .name = "satamv", |
| .type = PCI, |
| .devs.dev = satas_mv, |
| .init = satamv_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_LINUX_MTD == 1 |
| { |
| .name = "linux_mtd", |
| .type = OTHER, |
| .devs.note = "Device files /dev/mtd*\n", |
| .init = linux_mtd_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_LINUX_SPI == 1 |
| { |
| .name = "linux_spi", |
| .type = OTHER, |
| .devs.note = "Device files /dev/spidev*.*\n", |
| .init = linux_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_USBBLASTER_SPI == 1 |
| { |
| .name = "usbblaster_spi", |
| .type = USB, |
| .devs.dev = devs_usbblasterspi, |
| .init = usbblaster_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_MSTARDDC_SPI == 1 |
| { |
| .name = "mstarddc_spi", |
| .type = OTHER, |
| .devs.note = "MSTAR DDC devices addressable via /dev/i2c-* on Linux.\n", |
| .init = mstarddc_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_PICKIT2_SPI == 1 |
| { |
| .name = "pickit2_spi", |
| .type = USB, |
| .devs.dev = devs_pickit2_spi, |
| .init = pickit2_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_CH341A_SPI == 1 |
| { |
| .name = "ch341a_spi", |
| .type = USB, |
| .devs.dev = devs_ch341a_spi, |
| .init = ch341a_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = ch341a_spi_delay, |
| }, |
| #endif |
| |
| #if CONFIG_DIGILENT_SPI == 1 |
| { |
| .name = "digilent_spi", |
| .type = USB, |
| .devs.dev = devs_digilent_spi, |
| .init = digilent_spi_init, |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| #if CONFIG_JLINK_SPI == 1 |
| { |
| .name = "jlink_spi", |
| .type = OTHER, |
| .init = jlink_spi_init, |
| .devs.note = "SEGGER J-Link and compatible devices\n", |
| .map_flash_region = fallback_map, |
| .unmap_flash_region = fallback_unmap, |
| .delay = internal_delay, |
| }, |
| #endif |
| |
| {0}, /* This entry corresponds to PROGRAMMER_INVALID. */ |
| }; |
| |
| #define SHUTDOWN_MAXFN 32 |
| static int shutdown_fn_count = 0; |
| /** @private */ |
| static struct shutdown_func_data { |
| int (*func) (void *data); |
| void *data; |
| } shutdown_fn[SHUTDOWN_MAXFN]; |
| /* Initialize to 0 to make sure nobody registers a shutdown function before |
| * programmer init. |
| */ |
| static int may_register_shutdown = 0; |
| |
| /* Did we change something or was every erase/write skipped (if any)? */ |
| static bool all_skipped = true; |
| |
| static int check_block_eraser(const struct flashctx *flash, int k, int log); |
| |
| int shutdown_free(void *data) |
| { |
| free(data); |
| return 0; |
| } |
| |
| /* Register a function to be executed on programmer shutdown. |
| * The advantage over atexit() is that you can supply a void pointer which will |
| * be used as parameter to the registered function upon programmer shutdown. |
| * This pointer can point to arbitrary data used by said function, e.g. undo |
| * information for GPIO settings etc. If unneeded, set data=NULL. |
| * Please note that the first (void *data) belongs to the function signature of |
| * the function passed as first parameter. |
| */ |
| int register_shutdown(int (*function) (void *data), void *data) |
| { |
| if (shutdown_fn_count >= SHUTDOWN_MAXFN) { |
| msg_perr("Tried to register more than %i shutdown functions.\n", |
| SHUTDOWN_MAXFN); |
| return 1; |
| } |
| if (!may_register_shutdown) { |
| msg_perr("Tried to register a shutdown function before " |
| "programmer init.\n"); |
| return 1; |
| } |
| shutdown_fn[shutdown_fn_count].func = function; |
| shutdown_fn[shutdown_fn_count].data = data; |
| shutdown_fn_count++; |
| |
| return 0; |
| } |
| |
| int programmer_init(enum programmer prog, const char *param) |
| { |
| int ret; |
| |
| if (prog >= PROGRAMMER_INVALID) { |
| msg_perr("Invalid programmer specified!\n"); |
| return -1; |
| } |
| programmer = prog; |
| /* Initialize all programmer specific data. */ |
| /* Default to unlimited decode sizes. */ |
| max_rom_decode = (const struct decode_sizes) { |
| .parallel = 0xffffffff, |
| .lpc = 0xffffffff, |
| .fwh = 0xffffffff, |
| .spi = 0xffffffff, |
| }; |
| /* Default to top aligned flash at 4 GB. */ |
| flashbase = 0; |
| /* Registering shutdown functions is now allowed. */ |
| may_register_shutdown = 1; |
| /* Default to allowing writes. Broken programmers set this to 0. */ |
| programmer_may_write = 1; |
| |
| programmer_param = param; |
| msg_pdbg("Initializing %s programmer\n", programmer_table[programmer].name); |
| ret = programmer_table[programmer].init(); |
| if (programmer_param && strlen(programmer_param)) { |
| if (ret != 0) { |
| /* It is quite possible that any unhandled programmer parameter would have been valid, |
| * but an error in actual programmer init happened before the parameter was evaluated. |
| */ |
| msg_pwarn("Unhandled programmer parameters (possibly due to another failure): %s\n", |
| programmer_param); |
| } else { |
| /* Actual programmer init was successful, but the user specified an invalid or unusable |
| * (for the current programmer configuration) parameter. |
| */ |
| msg_perr("Unhandled programmer parameters: %s\n", programmer_param); |
| msg_perr("Aborting.\n"); |
| ret = ERROR_FATAL; |
| } |
| } |
| return ret; |
| } |
| |
| /** Calls registered shutdown functions and resets internal programmer-related variables. |
| * Calling it is safe even without previous initialization, but further interactions with programmer support |
| * require a call to programmer_init() (afterwards). |
| * |
| * @return The OR-ed result values of all shutdown functions (i.e. 0 on success). */ |
| int programmer_shutdown(void) |
| { |
| int ret = 0; |
| |
| /* Registering shutdown functions is no longer allowed. */ |
| may_register_shutdown = 0; |
| while (shutdown_fn_count > 0) { |
| int i = --shutdown_fn_count; |
| ret |= shutdown_fn[i].func(shutdown_fn[i].data); |
| } |
| |
| programmer_param = NULL; |
| registered_master_count = 0; |
| |
| return ret; |
| } |
| |
| void *programmer_map_flash_region(const char *descr, uintptr_t phys_addr, size_t len) |
| { |
| void *ret = programmer_table[programmer].map_flash_region(descr, phys_addr, len); |
| msg_gspew("%s: mapping %s from 0x%0*" PRIxPTR " to 0x%0*" PRIxPTR "\n", |
| __func__, descr, PRIxPTR_WIDTH, phys_addr, PRIxPTR_WIDTH, (uintptr_t) ret); |
| return ret; |
| } |
| |
| void programmer_unmap_flash_region(void *virt_addr, size_t len) |
| { |
| programmer_table[programmer].unmap_flash_region(virt_addr, len); |
| msg_gspew("%s: unmapped 0x%0*" PRIxPTR "\n", __func__, PRIxPTR_WIDTH, (uintptr_t)virt_addr); |
| } |
| |
| void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr) |
| { |
| flash->mst->par.chip_writeb(flash, val, addr); |
| } |
| |
| void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr) |
| { |
| flash->mst->par.chip_writew(flash, val, addr); |
| } |
| |
| void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr) |
| { |
| flash->mst->par.chip_writel(flash, val, addr); |
| } |
| |
| void chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len) |
| { |
| flash->mst->par.chip_writen(flash, buf, addr, len); |
| } |
| |
| uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr) |
| { |
| return flash->mst->par.chip_readb(flash, addr); |
| } |
| |
| uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr) |
| { |
| return flash->mst->par.chip_readw(flash, addr); |
| } |
| |
| uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr) |
| { |
| return flash->mst->par.chip_readl(flash, addr); |
| } |
| |
| void chip_readn(const struct flashctx *flash, uint8_t *buf, chipaddr addr, |
| size_t len) |
| { |
| flash->mst->par.chip_readn(flash, buf, addr, len); |
| } |
| |
| void programmer_delay(unsigned int usecs) |
| { |
| if (usecs > 0) |
| programmer_table[programmer].delay(usecs); |
| } |
| |
| int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, |
| int unsigned len) |
| { |
| chip_readn(flash, buf, flash->virtual_memory + start, len); |
| |
| return 0; |
| } |
| |
| /* This is a somewhat hacked function similar in some ways to strtok(). |
| * It will look for needle with a subsequent '=' in haystack, return a copy of |
| * needle and remove everything from the first occurrence of needle to the next |
| * delimiter from haystack. |
| */ |
| char *extract_param(const char *const *haystack, const char *needle, const char *delim) |
| { |
| char *param_pos, *opt_pos, *rest; |
| char *opt = NULL; |
| int optlen; |
| int needlelen; |
| |
| needlelen = strlen(needle); |
| if (!needlelen) { |
| msg_gerr("%s: empty needle! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| return NULL; |
| } |
| /* No programmer parameters given. */ |
| if (*haystack == NULL) |
| return NULL; |
| param_pos = strstr(*haystack, needle); |
| do { |
| if (!param_pos) |
| return NULL; |
| /* Needle followed by '='? */ |
| if (param_pos[needlelen] == '=') { |
| /* Beginning of the string? */ |
| if (param_pos == *haystack) |
| break; |
| /* After a delimiter? */ |
| if (strchr(delim, *(param_pos - 1))) |
| break; |
| } |
| /* Continue searching. */ |
| param_pos++; |
| param_pos = strstr(param_pos, needle); |
| } while (1); |
| |
| if (param_pos) { |
| /* Get the string after needle and '='. */ |
| opt_pos = param_pos + needlelen + 1; |
| optlen = strcspn(opt_pos, delim); |
| /* Return an empty string if the parameter was empty. */ |
| opt = malloc(optlen + 1); |
| if (!opt) { |
| msg_gerr("Out of memory!\n"); |
| exit(1); |
| } |
| strncpy(opt, opt_pos, optlen); |
| opt[optlen] = '\0'; |
| rest = opt_pos + optlen; |
| /* Skip all delimiters after the current parameter. */ |
| rest += strspn(rest, delim); |
| memmove(param_pos, rest, strlen(rest) + 1); |
| /* We could shrink haystack, but the effort is not worth it. */ |
| } |
| |
| return opt; |
| } |
| |
| char *extract_programmer_param(const char *param_name) |
| { |
| return extract_param(&programmer_param, param_name, ","); |
| } |
| |
| /* Returns the number of well-defined erasers for a chip. */ |
| static unsigned int count_usable_erasers(const struct flashctx *flash) |
| { |
| unsigned int usable_erasefunctions = 0; |
| int k; |
| for (k = 0; k < NUM_ERASEFUNCTIONS; k++) { |
| if (!check_block_eraser(flash, k, 0)) |
| usable_erasefunctions++; |
| } |
| return usable_erasefunctions; |
| } |
| |
| static int compare_range(const uint8_t *wantbuf, const uint8_t *havebuf, unsigned int start, unsigned int len) |
| { |
| int ret = 0, failcount = 0; |
| unsigned int i; |
| for (i = 0; i < len; i++) { |
| if (wantbuf[i] != havebuf[i]) { |
| /* Only print the first failure. */ |
| if (!failcount++) |
| msg_cerr("FAILED at 0x%08x! Expected=0x%02x, Found=0x%02x,", |
| start + i, wantbuf[i], havebuf[i]); |
| } |
| } |
| if (failcount) { |
| msg_cerr(" failed byte count from 0x%08x-0x%08x: 0x%x\n", |
| start, start + len - 1, failcount); |
| ret = -1; |
| } |
| return ret; |
| } |
| |
| /* start is an offset to the base address of the flash chip */ |
| int check_erased_range(struct flashctx *flash, unsigned int start, |
| unsigned int len) |
| { |
| int ret; |
| uint8_t *cmpbuf = malloc(len); |
| const uint8_t erased_value = ERASED_VALUE(flash); |
| |
| if (!cmpbuf) { |
| msg_gerr("Could not allocate memory!\n"); |
| exit(1); |
| } |
| memset(cmpbuf, erased_value, len); |
| ret = verify_range(flash, cmpbuf, start, len); |
| free(cmpbuf); |
| return ret; |
| } |
| |
| /* |
| * @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the |
| * flash content at location start |
| * @start offset to the base address of the flash chip |
| * @len length of the verified area |
| * @return 0 for success, -1 for failure |
| */ |
| int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len) |
| { |
| if (!len) |
| return -1; |
| |
| if (!flash->chip->read) { |
| msg_cerr("ERROR: flashrom has no read function for this flash chip.\n"); |
| return -1; |
| } |
| |
| uint8_t *readbuf = malloc(len); |
| if (!readbuf) { |
| msg_gerr("Could not allocate memory!\n"); |
| return -1; |
| } |
| int ret = 0; |
| |
| if (start + len > flash->chip->total_size * 1024) { |
| msg_gerr("Error: %s called with start 0x%x + len 0x%x >" |
| " total_size 0x%x\n", __func__, start, len, |
| flash->chip->total_size * 1024); |
| ret = -1; |
| goto out_free; |
| } |
| |
| ret = flash->chip->read(flash, readbuf, start, len); |
| if (ret) { |
| msg_gerr("Verification impossible because read failed " |
| "at 0x%x (len 0x%x)\n", start, len); |
| ret = -1; |
| goto out_free; |
| } |
| |
| ret = compare_range(cmpbuf, readbuf, start, len); |
| out_free: |
| free(readbuf); |
| return ret; |
| } |
| |
| /* Helper function for need_erase() that focuses on granularities of gran bytes. */ |
| static int need_erase_gran_bytes(const uint8_t *have, const uint8_t *want, unsigned int len, |
| unsigned int gran, const uint8_t erased_value) |
| { |
| unsigned int i, j, limit; |
| for (j = 0; j < len / gran; j++) { |
| limit = min (gran, len - j * gran); |
| /* Are 'have' and 'want' identical? */ |
| if (!memcmp(have + j * gran, want + j * gran, limit)) |
| continue; |
| /* have needs to be in erased state. */ |
| for (i = 0; i < limit; i++) |
| if (have[j * gran + i] != erased_value) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check if the buffer @have can be programmed to the content of @want without |
| * erasing. This is only possible if all chunks of size @gran are either kept |
| * as-is or changed from an all-ones state to any other state. |
| * |
| * Warning: This function assumes that @have and @want point to naturally |
| * aligned regions. |
| * |
| * @have buffer with current content |
| * @want buffer with desired content |
| * @len length of the checked area |
| * @gran write granularity (enum, not count) |
| * @return 0 if no erase is needed, 1 otherwise |
| */ |
| int need_erase(const uint8_t *have, const uint8_t *want, unsigned int len, |
| enum write_granularity gran, const uint8_t erased_value) |
| { |
| int result = 0; |
| unsigned int i; |
| |
| switch (gran) { |
| case write_gran_1bit: |
| for (i = 0; i < len; i++) |
| if ((have[i] & want[i]) != want[i]) { |
| result = 1; |
| break; |
| } |
| break; |
| case write_gran_1byte: |
| for (i = 0; i < len; i++) |
| if ((have[i] != want[i]) && (have[i] != erased_value)) { |
| result = 1; |
| break; |
| } |
| break; |
| case write_gran_128bytes: |
| result = need_erase_gran_bytes(have, want, len, 128, erased_value); |
| break; |
| case write_gran_256bytes: |
| result = need_erase_gran_bytes(have, want, len, 256, erased_value); |
| break; |
| case write_gran_264bytes: |
| result = need_erase_gran_bytes(have, want, len, 264, erased_value); |
| break; |
| case write_gran_512bytes: |
| result = need_erase_gran_bytes(have, want, len, 512, erased_value); |
| break; |
| case write_gran_528bytes: |
| result = need_erase_gran_bytes(have, want, len, 528, erased_value); |
| break; |
| case write_gran_1024bytes: |
| result = need_erase_gran_bytes(have, want, len, 1024, erased_value); |
| break; |
| case write_gran_1056bytes: |
| result = need_erase_gran_bytes(have, want, len, 1056, erased_value); |
| break; |
| case write_gran_1byte_implicit_erase: |
| /* Do not erase, handle content changes from anything->0xff by writing 0xff. */ |
| result = 0; |
| break; |
| default: |
| msg_cerr("%s: Unsupported granularity! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| } |
| return result; |
| } |
| |
| /** |
| * Check if the buffer @have needs to be programmed to get the content of @want. |
| * If yes, return 1 and fill in first_start with the start address of the |
| * write operation and first_len with the length of the first to-be-written |
| * chunk. If not, return 0 and leave first_start and first_len undefined. |
| * |
| * Warning: This function assumes that @have and @want point to naturally |
| * aligned regions. |
| * |
| * @have buffer with current content |
| * @want buffer with desired content |
| * @len length of the checked area |
| * @gran write granularity (enum, not count) |
| * @first_start offset of the first byte which needs to be written (passed in |
| * value is increased by the offset of the first needed write |
| * relative to have/want or unchanged if no write is needed) |
| * @return length of the first contiguous area which needs to be written |
| * 0 if no write is needed |
| * |
| * FIXME: This function needs a parameter which tells it about coalescing |
| * in relation to the max write length of the programmer and the max write |
| * length of the chip. |
| */ |
| static unsigned int get_next_write(const uint8_t *have, const uint8_t *want, unsigned int len, |
| unsigned int *first_start, |
| enum write_granularity gran) |
| { |
| int need_write = 0; |
| unsigned int rel_start = 0, first_len = 0; |
| unsigned int i, limit, stride; |
| |
| switch (gran) { |
| case write_gran_1bit: |
| case write_gran_1byte: |
| case write_gran_1byte_implicit_erase: |
| stride = 1; |
| break; |
| case write_gran_128bytes: |
| stride = 128; |
| break; |
| case write_gran_256bytes: |
| stride = 256; |
| break; |
| case write_gran_264bytes: |
| stride = 264; |
| break; |
| case write_gran_512bytes: |
| stride = 512; |
| break; |
| case write_gran_528bytes: |
| stride = 528; |
| break; |
| case write_gran_1024bytes: |
| stride = 1024; |
| break; |
| case write_gran_1056bytes: |
| stride = 1056; |
| break; |
| default: |
| msg_cerr("%s: Unsupported granularity! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| /* Claim that no write was needed. A write with unknown |
| * granularity is too dangerous to try. |
| */ |
| return 0; |
| } |
| for (i = 0; i < len / stride; i++) { |
| limit = min(stride, len - i * stride); |
| /* Are 'have' and 'want' identical? */ |
| if (memcmp(have + i * stride, want + i * stride, limit)) { |
| if (!need_write) { |
| /* First location where have and want differ. */ |
| need_write = 1; |
| rel_start = i * stride; |
| } |
| } else { |
| if (need_write) { |
| /* First location where have and want |
| * do not differ anymore. |
| */ |
| break; |
| } |
| } |
| } |
| if (need_write) |
| first_len = min(i * stride - rel_start, len); |
| *first_start += rel_start; |
| return first_len; |
| } |
| |
| /* This function generates various test patterns useful for testing controller |
| * and chip communication as well as chip behaviour. |
| * |
| * If a byte can be written multiple times, each time keeping 0-bits at 0 |
| * and changing 1-bits to 0 if the new value for that bit is 0, the effect |
| * is essentially an AND operation. That's also the reason why this function |
| * provides the result of AND between various patterns. |
| * |
| * Below is a list of patterns (and their block length). |
| * Pattern 0 is 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5 (16 Bytes) |
| * Pattern 1 is 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa (16 Bytes) |
| * Pattern 2 is 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f (16 Bytes) |
| * Pattern 3 is a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af (16 Bytes) |
| * Pattern 4 is 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 (16 Bytes) |
| * Pattern 5 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f (16 Bytes) |
| * Pattern 6 is 00 (1 Byte) |
| * Pattern 7 is ff (1 Byte) |
| * Patterns 0-7 have a big-endian block number in the last 2 bytes of each 256 |
| * byte block. |
| * |
| * Pattern 8 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11... (256 B) |
| * Pattern 9 is ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef ee... (256 B) |
| * Pattern 10 is 00 00 00 01 00 02 00 03 00 04... (128 kB big-endian counter) |
| * Pattern 11 is ff ff ff fe ff fd ff fc ff fb... (128 kB big-endian downwards) |
| * Pattern 12 is 00 (1 Byte) |
| * Pattern 13 is ff (1 Byte) |
| * Patterns 8-13 have no block number. |
| * |
| * Patterns 0-3 are created to detect and efficiently diagnose communication |
| * slips like missed bits or bytes and their repetitive nature gives good visual |
| * cues to the person inspecting the results. In addition, the following holds: |
| * AND Pattern 0/1 == Pattern 4 |
| * AND Pattern 2/3 == Pattern 5 |
| * AND Pattern 0/1/2/3 == AND Pattern 4/5 == Pattern 6 |
| * A weakness of pattern 0-5 is the inability to detect swaps/copies between |
| * any two 16-byte blocks except for the last 16-byte block in a 256-byte bloc. |
| * They work perfectly for detecting any swaps/aliasing of blocks >= 256 bytes. |
| * 0x5 and 0xa were picked because they are 0101 and 1010 binary. |
| * Patterns 8-9 are best for detecting swaps/aliasing of blocks < 256 bytes. |
| * Besides that, they provide for bit testing of the last two bytes of every |
| * 256 byte block which contains the block number for patterns 0-6. |
| * Patterns 10-11 are special purpose for detecting subblock aliasing with |
| * block sizes >256 bytes (some Dataflash chips etc.) |
| * AND Pattern 8/9 == Pattern 12 |
| * AND Pattern 10/11 == Pattern 12 |
| * Pattern 13 is the completely erased state. |
| * None of the patterns can detect aliasing at boundaries which are a multiple |
| * of 16 MBytes (but such chips do not exist anyway for Parallel/LPC/FWH/SPI). |
| */ |
| int generate_testpattern(uint8_t *buf, uint32_t size, int variant) |
| { |
| int i; |
| |
| if (!buf) { |
| msg_gerr("Invalid buffer!\n"); |
| return 1; |
| } |
| |
| switch (variant) { |
| case 0: |
| for (i = 0; i < size; i++) |
| buf[i] = (i & 0xf) << 4 | 0x5; |
| break; |
| case 1: |
| for (i = 0; i < size; i++) |
| buf[i] = (i & 0xf) << 4 | 0xa; |
| break; |
| case 2: |
| for (i = 0; i < size; i++) |
| buf[i] = 0x50 | (i & 0xf); |
| break; |
| case 3: |
| for (i = 0; i < size; i++) |
| buf[i] = 0xa0 | (i & 0xf); |
| break; |
| case 4: |
| for (i = 0; i < size; i++) |
| buf[i] = (i & 0xf) << 4; |
| break; |
| case 5: |
| for (i = 0; i < size; i++) |
| buf[i] = i & 0xf; |
| break; |
| case 6: |
| memset(buf, 0x00, size); |
| break; |
| case 7: |
| memset(buf, 0xff, size); |
| break; |
| case 8: |
| for (i = 0; i < size; i++) |
| buf[i] = i & 0xff; |
| break; |
| case 9: |
| for (i = 0; i < size; i++) |
| buf[i] = ~(i & 0xff); |
| break; |
| case 10: |
| for (i = 0; i < size % 2; i++) { |
| buf[i * 2] = (i >> 8) & 0xff; |
| buf[i * 2 + 1] = i & 0xff; |
| } |
| if (size & 0x1) |
| buf[i * 2] = (i >> 8) & 0xff; |
| break; |
| case 11: |
| for (i = 0; i < size % 2; i++) { |
| buf[i * 2] = ~((i >> 8) & 0xff); |
| buf[i * 2 + 1] = ~(i & 0xff); |
| } |
| if (size & 0x1) |
| buf[i * 2] = ~((i >> 8) & 0xff); |
| break; |
| case 12: |
| memset(buf, 0x00, size); |
| break; |
| case 13: |
| memset(buf, 0xff, size); |
| break; |
| } |
| |
| if ((variant >= 0) && (variant <= 7)) { |
| /* Write block number in the last two bytes of each 256-byte |
| * block, big endian for easier reading of the hexdump. |
| * Note that this wraps around for chips larger than 2^24 bytes |
| * (16 MB). |
| */ |
| for (i = 0; i < size / 256; i++) { |
| buf[i * 256 + 254] = (i >> 8) & 0xff; |
| buf[i * 256 + 255] = i & 0xff; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Returns the number of busses commonly supported by the current programmer and flash chip where the latter |
| * can not be completely accessed due to size/address limits of the programmer. */ |
| unsigned int count_max_decode_exceedings(const struct flashctx *flash) |
| { |
| unsigned int limitexceeded = 0; |
| uint32_t size = flash->chip->total_size * 1024; |
| enum chipbustype buses = flash->mst->buses_supported & flash->chip->bustype; |
| |
| if ((buses & BUS_PARALLEL) && (max_rom_decode.parallel < size)) { |
| limitexceeded++; |
| msg_pdbg("Chip size %u kB is bigger than supported " |
| "size %u kB of chipset/board/programmer " |
| "for %s interface, " |
| "probe/read/erase/write may fail. ", size / 1024, |
| max_rom_decode.parallel / 1024, "Parallel"); |
| } |
| if ((buses & BUS_LPC) && (max_rom_decode.lpc < size)) { |
| limitexceeded++; |
| msg_pdbg("Chip size %u kB is bigger than supported " |
| "size %u kB of chipset/board/programmer " |
| "for %s interface, " |
| "probe/read/erase/write may fail. ", size / 1024, |
| max_rom_decode.lpc / 1024, "LPC"); |
| } |
| if ((buses & BUS_FWH) && (max_rom_decode.fwh < size)) { |
| limitexceeded++; |
| msg_pdbg("Chip size %u kB is bigger than supported " |
| "size %u kB of chipset/board/programmer " |
| "for %s interface, " |
| "probe/read/erase/write may fail. ", size / 1024, |
| max_rom_decode.fwh / 1024, "FWH"); |
| } |
| if ((buses & BUS_SPI) && (max_rom_decode.spi < size)) { |
| limitexceeded++; |
| msg_pdbg("Chip size %u kB is bigger than supported " |
| "size %u kB of chipset/board/programmer " |
| "for %s interface, " |
| "probe/read/erase/write may fail. ", size / 1024, |
| max_rom_decode.spi / 1024, "SPI"); |
| } |
| return limitexceeded; |
| } |
| |
| void unmap_flash(struct flashctx *flash) |
| { |
| if (flash->virtual_registers != (chipaddr)ERROR_PTR) { |
| programmer_unmap_flash_region((void *)flash->virtual_registers, flash->chip->total_size * 1024); |
| flash->physical_registers = 0; |
| flash->virtual_registers = (chipaddr)ERROR_PTR; |
| } |
| |
| if (flash->virtual_memory != (chipaddr)ERROR_PTR) { |
| programmer_unmap_flash_region((void *)flash->virtual_memory, flash->chip->total_size * 1024); |
| flash->physical_memory = 0; |
| flash->virtual_memory = (chipaddr)ERROR_PTR; |
| } |
| } |
| |
| int map_flash(struct flashctx *flash) |
| { |
| /* Init pointers to the fail-safe state to distinguish them later from legit values. */ |
| flash->virtual_memory = (chipaddr)ERROR_PTR; |
| flash->virtual_registers = (chipaddr)ERROR_PTR; |
| |
| /* FIXME: This avoids mapping (and unmapping) of flash chip definitions with size 0. |
| * These are used for various probing-related hacks that would not map successfully anyway and should be |
| * removed ASAP. */ |
| if (flash->chip->total_size == 0) |
| return 0; |
| |
| const chipsize_t size = flash->chip->total_size * 1024; |
| uintptr_t base = flashbase ? flashbase : (0xffffffff - size + 1); |
| void *addr = programmer_map_flash_region(flash->chip->name, base, size); |
| if (addr == ERROR_PTR) { |
| msg_perr("Could not map flash chip %s at 0x%0*" PRIxPTR ".\n", |
| flash->chip->name, PRIxPTR_WIDTH, base); |
| return 1; |
| } |
| flash->physical_memory = base; |
| flash->virtual_memory = (chipaddr)addr; |
| |
| /* FIXME: Special function registers normally live 4 MByte below flash space, but it might be somewhere |
| * completely different on some chips and programmers, or not mappable at all. |
| * Ignore these problems for now and always report success. */ |
| if (flash->chip->feature_bits & FEATURE_REGISTERMAP) { |
| base = 0xffffffff - size - 0x400000 + 1; |
| addr = programmer_map_flash_region("flash chip registers", base, size); |
| if (addr == ERROR_PTR) { |
| msg_pdbg2("Could not map flash chip registers %s at 0x%0*" PRIxPTR ".\n", |
| flash->chip->name, PRIxPTR_WIDTH, base); |
| return 0; |
| } |
| flash->physical_registers = base; |
| flash->virtual_registers = (chipaddr)addr; |
| } |
| return 0; |
| } |
| |
| /* |
| * Return a string corresponding to the bustype parameter. |
| * Memory is obtained with malloc() and must be freed with free() by the caller. |
| */ |
| char *flashbuses_to_text(enum chipbustype bustype) |
| { |
| char *ret = calloc(1, 1); |
| /* |
| * FIXME: Once all chipsets and flash chips have been updated, NONSPI |
| * will cease to exist and should be eliminated here as well. |
| */ |
| if (bustype == BUS_NONSPI) { |
| ret = strcat_realloc(ret, "Non-SPI, "); |
| } else { |
| if (bustype & BUS_PARALLEL) |
| ret = strcat_realloc(ret, "Parallel, "); |
| if (bustype & BUS_LPC) |
| ret = strcat_realloc(ret, "LPC, "); |
| if (bustype & BUS_FWH) |
| ret = strcat_realloc(ret, "FWH, "); |
| if (bustype & BUS_SPI) |
| ret = strcat_realloc(ret, "SPI, "); |
| if (bustype & BUS_PROG) |
| ret = strcat_realloc(ret, "Programmer-specific, "); |
| if (bustype == BUS_NONE) |
| ret = strcat_realloc(ret, "None, "); |
| } |
| /* Kill last comma. */ |
| ret[strlen(ret) - 2] = '\0'; |
| ret = realloc(ret, strlen(ret) + 1); |
| return ret; |
| } |
| |
| int probe_flash(struct registered_master *mst, int startchip, struct flashctx *flash, int force) |
| { |
| const struct flashchip *chip; |
| enum chipbustype buses_common; |
| char *tmp; |
| |
| for (chip = flashchips + startchip; chip && chip->name; chip++) { |
| if (chip_to_probe && strcmp(chip->name, chip_to_probe) != 0) |
| continue; |
| buses_common = mst->buses_supported & chip->bustype; |
| if (!buses_common) |
| continue; |
| /* Only probe for SPI25 chips by default. */ |
| if (chip->bustype == BUS_SPI && !chip_to_probe && chip->spi_cmd_set != SPI25) |
| continue; |
| msg_gdbg("Probing for %s %s, %d kB: ", chip->vendor, chip->name, chip->total_size); |
| if (!chip->probe && !force) { |
| msg_gdbg("failed! flashrom has no probe function for this flash chip.\n"); |
| continue; |
| } |
| |
| /* Start filling in the dynamic data. */ |
| flash->chip = calloc(1, sizeof(struct flashchip)); |
| if (!flash->chip) { |
| msg_gerr("Out of memory!\n"); |
| exit(1); |
| } |
| memcpy(flash->chip, chip, sizeof(struct flashchip)); |
| flash->mst = mst; |
| |
| if (map_flash(flash) != 0) |
| goto notfound; |
| |
| /* We handle a forced match like a real match, we just avoid probing. Note that probe_flash() |
| * is only called with force=1 after normal probing failed. |
| */ |
| if (force) |
| break; |
| |
| if (flash->chip->probe(flash) != 1) |
| goto notfound; |
| |
| /* If this is the first chip found, accept it. |
| * If this is not the first chip found, accept it only if it is |
| * a non-generic match. SFDP and CFI are generic matches. |
| * startchip==0 means this call to probe_flash() is the first |
| * one for this programmer interface (master) and thus no other chip has |
| * been found on this interface. |
| */ |
| if (startchip == 0 && flash->chip->model_id == SFDP_DEVICE_ID) { |
| msg_cinfo("===\n" |
| "SFDP has autodetected a flash chip which is " |
| "not natively supported by flashrom yet.\n"); |
| if (count_usable_erasers(flash) == 0) |
| msg_cinfo("The standard operations read and " |
| "verify should work, but to support " |
| "erase, write and all other " |
| "possible features"); |
| else |
| msg_cinfo("All standard operations (read, " |
| "verify, erase and write) should " |
| "work, but to support all possible " |
| "features"); |
| |
| msg_cinfo(" we need to add them manually.\n" |
| "You can help us by mailing us the output of the following command to " |
| "flashrom@flashrom.org:\n" |
| "'flashrom -VV [plus the -p/--programmer parameter]'\n" |
| "Thanks for your help!\n" |
| "===\n"); |
| } |
| |
| /* First flash chip detected on this bus. */ |
| if (startchip == 0) |
| break; |
| /* Not the first flash chip detected on this bus, but not a generic match either. */ |
| if ((flash->chip->model_id != GENERIC_DEVICE_ID) && (flash->chip->model_id != SFDP_DEVICE_ID)) |
| break; |
| /* Not the first flash chip detected on this bus, and it's just a generic match. Ignore it. */ |
| notfound: |
| unmap_flash(flash); |
| free(flash->chip); |
| flash->chip = NULL; |
| } |
| |
| if (!flash->chip) |
| return -1; |
| |
| /* Fill fallback layout covering the whole chip. */ |
| struct single_layout *const fallback = &flash->fallback_layout; |
| fallback->base.entries = &fallback->entry; |
| fallback->base.num_entries = 1; |
| fallback->entry.start = 0; |
| fallback->entry.end = flash->chip->total_size * 1024 - 1; |
| fallback->entry.included = true; |
| strcpy(fallback->entry.name, "complete flash"); |
| |
| tmp = flashbuses_to_text(flash->chip->bustype); |
| msg_cinfo("%s %s flash chip \"%s\" (%d kB, %s) ", force ? "Assuming" : "Found", |
| flash->chip->vendor, flash->chip->name, flash->chip->total_size, tmp); |
| free(tmp); |
| #if CONFIG_INTERNAL == 1 |
| if (programmer_table[programmer].map_flash_region == physmap) |
| msg_cinfo("mapped at physical address 0x%0*" PRIxPTR ".\n", |
| PRIxPTR_WIDTH, flash->physical_memory); |
| else |
| #endif |
| msg_cinfo("on %s.\n", programmer_table[programmer].name); |
| |
| /* Flash registers may more likely not be mapped if the chip was forced. |
| * Lock info may be stored in registers, so avoid lock info printing. */ |
| if (!force) |
| if (flash->chip->printlock) |
| flash->chip->printlock(flash); |
| |
| /* Get out of the way for later runs. */ |
| unmap_flash(flash); |
| |
| /* Return position of matching chip. */ |
| return chip - flashchips; |
| } |
| |
| int read_buf_from_file(unsigned char *buf, unsigned long size, |
| const char *filename) |
| { |
| #ifdef __LIBPAYLOAD__ |
| msg_gerr("Error: No file I/O support in libpayload\n"); |
| return 1; |
| #else |
| int ret = 0; |
| |
| FILE *image; |
| if ((image = fopen(filename, "rb")) == NULL) { |
| msg_gerr("Error: opening file \"%s\" failed: %s\n", filename, strerror(errno)); |
| return 1; |
| } |
| |
| struct stat image_stat; |
| if (fstat(fileno(image), &image_stat) != 0) { |
| msg_gerr("Error: getting metadata of file \"%s\" failed: %s\n", filename, strerror(errno)); |
| ret = 1; |
| goto out; |
| } |
| if (image_stat.st_size != size) { |
| msg_gerr("Error: Image size (%jd B) doesn't match the flash chip's size (%lu B)!\n", |
| (intmax_t)image_stat.st_size, size); |
| ret = 1; |
| goto out; |
| } |
| |
| unsigned long numbytes = fread(buf, 1, size, image); |
| if (numbytes != size) { |
| msg_gerr("Error: Failed to read complete file. Got %ld bytes, " |
| "wanted %ld!\n", numbytes, size); |
| ret = 1; |
| } |
| out: |
| (void)fclose(image); |
| return ret; |
| #endif |
| } |
| |
| int write_buf_to_file(const unsigned char *buf, unsigned long size, const char *filename) |
| { |
| #ifdef __LIBPAYLOAD__ |
| msg_gerr("Error: No file I/O support in libpayload\n"); |
| return 1; |
| #else |
| FILE *image; |
| int ret = 0; |
| |
| if (!filename) { |
| msg_gerr("No filename specified.\n"); |
| return 1; |
| } |
| if ((image = fopen(filename, "wb")) == NULL) { |
| msg_gerr("Error: opening file \"%s\" failed: %s\n", filename, strerror(errno)); |
| return 1; |
| } |
| |
| unsigned long numbytes = fwrite(buf, 1, size, image); |
| if (numbytes != size) { |
| msg_gerr("Error: file %s could not be written completely.\n", filename); |
| ret = 1; |
| goto out; |
| } |
| if (fflush(image)) { |
| msg_gerr("Error: flushing file \"%s\" failed: %s\n", filename, strerror(errno)); |
| ret = 1; |
| } |
| // Try to fsync() only regular files and if that function is available at all (e.g. not on MinGW). |
| #if defined(_POSIX_FSYNC) && (_POSIX_FSYNC != -1) |
| struct stat image_stat; |
| if (fstat(fileno(image), &image_stat) != 0) { |
| msg_gerr("Error: getting metadata of file \"%s\" failed: %s\n", filename, strerror(errno)); |
| ret = 1; |
| goto out; |
| } |
| if (S_ISREG(image_stat.st_mode)) { |
| if (fsync(fileno(image))) { |
| msg_gerr("Error: fsyncing file \"%s\" failed: %s\n", filename, strerror(errno)); |
| ret = 1; |
| } |
| } |
| #endif |
| out: |
| if (fclose(image)) { |
| msg_gerr("Error: closing file \"%s\" failed: %s\n", filename, strerror(errno)); |
| ret = 1; |
| } |
| return ret; |
| #endif |
| } |
| |
| static int read_by_layout(struct flashctx *, uint8_t *); |
| int read_flash_to_file(struct flashctx *flash, const char *filename) |
| { |
| unsigned long size = flash->chip->total_size * 1024; |
| unsigned char *buf = calloc(size, sizeof(char)); |
| int ret = 0; |
| |
| msg_cinfo("Reading flash... "); |
| if (!buf) { |
| msg_gerr("Memory allocation failed!\n"); |
| msg_cinfo("FAILED.\n"); |
| return 1; |
| } |
| if (!flash->chip->read) { |
| msg_cerr("No read function available for this flash chip.\n"); |
| ret = 1; |
| goto out_free; |
| } |
| if (read_by_layout(flash, buf)) { |
| msg_cerr("Read operation failed!\n"); |
| ret = 1; |
| goto out_free; |
| } |
| |
| ret = write_buf_to_file(buf, size, filename); |
| out_free: |
| free(buf); |
| msg_cinfo("%s.\n", ret ? "FAILED" : "done"); |
| return ret; |
| } |
| |
| /* Even if an error is found, the function will keep going and check the rest. */ |
| static int selfcheck_eraseblocks(const struct flashchip *chip) |
| { |
| int i, j, k; |
| int ret = 0; |
| |
| for (k = 0; k < NUM_ERASEFUNCTIONS; k++) { |
| unsigned int done = 0; |
| struct block_eraser eraser = chip->block_erasers[k]; |
| |
| for (i = 0; i < NUM_ERASEREGIONS; i++) { |
| /* Blocks with zero size are bugs in flashchips.c. */ |
| if (eraser.eraseblocks[i].count && |
| !eraser.eraseblocks[i].size) { |
| msg_gerr("ERROR: Flash chip %s erase function " |
| "%i region %i has size 0. Please report" |
| " a bug at flashrom@flashrom.org\n", |
| chip->name, k, i); |
| ret = 1; |
| } |
| /* Blocks with zero count are bugs in flashchips.c. */ |
| if (!eraser.eraseblocks[i].count && |
| eraser.eraseblocks[i].size) { |
| msg_gerr("ERROR: Flash chip %s erase function " |
| "%i region %i has count 0. Please report" |
| " a bug at flashrom@flashrom.org\n", |
| chip->name, k, i); |
| ret = 1; |
| } |
| done += eraser.eraseblocks[i].count * |
| eraser.eraseblocks[i].size; |
| } |
| /* Empty eraseblock definition with erase function. */ |
| if (!done && eraser.block_erase) |
| msg_gspew("Strange: Empty eraseblock definition with " |
| "non-empty erase function. Not an error.\n"); |
| if (!done) |
| continue; |
| if (done != chip->total_size * 1024) { |
| msg_gerr("ERROR: Flash chip %s erase function %i " |
| "region walking resulted in 0x%06x bytes total," |
| " expected 0x%06x bytes. Please report a bug at" |
| " flashrom@flashrom.org\n", chip->name, k, |
| done, chip->total_size * 1024); |
| ret = 1; |
| } |
| if (!eraser.block_erase) |
| continue; |
| /* Check if there are identical erase functions for different |
| * layouts. That would imply "magic" erase functions. The |
| * easiest way to check this is with function pointers. |
| */ |
| for (j = k + 1; j < NUM_ERASEFUNCTIONS; j++) { |
| if (eraser.block_erase == |
| chip->block_erasers[j].block_erase) { |
| msg_gerr("ERROR: Flash chip %s erase function " |
| "%i and %i are identical. Please report" |
| " a bug at flashrom@flashrom.org\n", |
| chip->name, k, j); |
| ret = 1; |
| } |
| } |
| } |
| return ret; |
| } |
| |
| static int check_block_eraser(const struct flashctx *flash, int k, int log) |
| { |
| struct block_eraser eraser = flash->chip->block_erasers[k]; |
| |
| if (!eraser.block_erase && !eraser.eraseblocks[0].count) { |
| if (log) |
| msg_cdbg("not defined. "); |
| return 1; |
| } |
| if (!eraser.block_erase && eraser.eraseblocks[0].count) { |
| if (log) |
| msg_cdbg("eraseblock layout is known, but matching " |
| "block erase function is not implemented. "); |
| return 1; |
| } |
| if (eraser.block_erase && !eraser.eraseblocks[0].count) { |
| if (log) |
| msg_cdbg("block erase function found, but " |
| "eraseblock layout is not defined. "); |
| return 1; |
| } |
| // TODO: Once erase functions are annotated with allowed buses, check that as well. |
| return 0; |
| } |
| |
| /** |
| * @brief Reads the included layout regions into a buffer. |
| * |
| * If there is no layout set in the given flash context, the whole chip will |
| * be read. |
| * |
| * @param flashctx Flash context to be used. |
| * @param buffer Buffer of full chip size to read into. |
| * @return 0 on success, |
| * 1 if any read fails. |
| */ |
| static int read_by_layout(struct flashctx *const flashctx, uint8_t *const buffer) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| |
| size_t i; |
| for (i = 0; i < layout->num_entries; ++i) { |
| if (!layout->entries[i].included) |
| continue; |
| |
| const chipoff_t region_start = layout->entries[i].start; |
| const chipsize_t region_len = layout->entries[i].end - layout->entries[i].start + 1; |
| |
| if (flashctx->chip->read(flashctx, buffer + region_start, region_start, region_len)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| typedef int (*erasefn_t)(struct flashctx *, unsigned int addr, unsigned int len); |
| /** |
| * @private |
| * |
| * For read-erase-write, `curcontents` and `newcontents` shall point |
| * to buffers of the chip's size. Both are supposed to be prefilled |
| * with at least the included layout regions of the current flash |
| * contents (`curcontents`) and the data to be written to the flash |
| * (`newcontents`). |
| * |
| * For erase, `curcontents` and `newcontents` shall be NULL-pointers. |
| * |
| * The `chipoff_t` values are used internally by `walk_by_layout()`. |
| */ |
| struct walk_info { |
| uint8_t *curcontents; |
| const uint8_t *newcontents; |
| chipoff_t region_start; |
| chipoff_t region_end; |
| chipoff_t erase_start; |
| chipoff_t erase_end; |
| }; |
| /* returns 0 on success, 1 to retry with another erase function, 2 for immediate abort */ |
| typedef int (*per_blockfn_t)(struct flashctx *, const struct walk_info *, erasefn_t); |
| |
| static int walk_eraseblocks(struct flashctx *const flashctx, |
| struct walk_info *const info, |
| const size_t erasefunction, const per_blockfn_t per_blockfn) |
| { |
| int ret; |
| size_t i, j; |
| bool first = true; |
| struct block_eraser *const eraser = &flashctx->chip->block_erasers[erasefunction]; |
| |
| info->erase_start = 0; |
| for (i = 0; i < NUM_ERASEREGIONS; ++i) { |
| /* count==0 for all automatically initialized array |
| members so the loop below won't be executed for them. */ |
| for (j = 0; j < eraser->eraseblocks[i].count; ++j, info->erase_start = info->erase_end + 1) { |
| info->erase_end = info->erase_start + eraser->eraseblocks[i].size - 1; |
| |
| /* Skip any eraseblock that is completely outside the current region. */ |
| if (info->erase_end < info->region_start) |
| continue; |
| if (info->region_end < info->erase_start) |
| break; |
| |
| /* Print this for every block except the first one. */ |
| if (first) |
| first = false; |
| else |
| msg_cdbg(", "); |
| msg_cdbg("0x%06x-0x%06x:", info->erase_start, info->erase_end); |
| |
| ret = per_blockfn(flashctx, info, eraser->block_erase); |
| if (ret) |
| return ret; |
| } |
| if (info->region_end < info->erase_start) |
| break; |
| } |
| msg_cdbg("\n"); |
| return 0; |
| } |
| |
| static int walk_by_layout(struct flashctx *const flashctx, struct walk_info *const info, |
| const per_blockfn_t per_blockfn) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| |
| all_skipped = true; |
| msg_cinfo("Erasing and writing flash chip... "); |
| |
| size_t i; |
| for (i = 0; i < layout->num_entries; ++i) { |
| if (!layout->entries[i].included) |
| continue; |
| |
| info->region_start = layout->entries[i].start; |
| info->region_end = layout->entries[i].end; |
| |
| size_t j; |
| int error = 1; /* retry as long as it's 1 */ |
| for (j = 0; j < NUM_ERASEFUNCTIONS; ++j) { |
| if (j != 0) |
| msg_cinfo("Looking for another erase function.\n"); |
| msg_cdbg("Trying erase function %zi... ", j); |
| if (check_block_eraser(flashctx, j, 1)) |
| continue; |
| |
| error = walk_eraseblocks(flashctx, info, j, per_blockfn); |
| if (error != 1) |
| break; |
| |
| if (info->curcontents) { |
| msg_cinfo("Reading current flash chip contents... "); |
| if (read_by_layout(flashctx, info->curcontents)) { |
| /* Now we are truly screwed. Read failed as well. */ |
| msg_cerr("Can't read anymore! Aborting.\n"); |
| /* We have no idea about the flash chip contents, so |
| retrying with another erase function is pointless. */ |
| error = 2; |
| break; |
| } |
| msg_cinfo("done. "); |
| } |
| } |
| if (error == 1) |
| msg_cinfo("No usable erase functions left.\n"); |
| if (error) { |
| msg_cerr("FAILED!\n"); |
| return 1; |
| } |
| } |
| if (all_skipped) |
| msg_cinfo("\nWarning: Chip content is identical to the requested image.\n"); |
| msg_cinfo("Erase/write done.\n"); |
| return 0; |
| } |
| |
| static int erase_block(struct flashctx *const flashctx, |
| const struct walk_info *const info, const erasefn_t erasefn) |
| { |
| const unsigned int erase_len = info->erase_end + 1 - info->erase_start; |
| |
| all_skipped = false; |
| |
| msg_cdbg("E"); |
| if (erasefn(flashctx, info->erase_start, erase_len)) |
| return 1; |
| if (check_erased_range(flashctx, info->erase_start, erase_len)) { |
| msg_cerr("ERASE FAILED!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * @brief Erases the included layout regions. |
| * |
| * If there is no layout set in the given flash context, the whole chip will |
| * be erased. |
| * |
| * @param flashctx Flash context to be used. |
| * @param buffer Buffer of full chip size to read into. |
| * @return 0 on success, |
| * 1 if all available erase functions failed. |
| */ |
| static int erase_by_layout(struct flashctx *const flashctx) |
| { |
| struct walk_info info = { 0 }; |
| return walk_by_layout(flashctx, &info, &erase_block); |
| } |
| |
| static int read_erase_write_block(struct flashctx *const flashctx, |
| const struct walk_info *const info, const erasefn_t erasefn) |
| { |
| const chipsize_t erase_len = info->erase_end + 1 - info->erase_start; |
| const bool region_unaligned = info->region_start > info->erase_start || |
| info->erase_end > info->region_end; |
| const uint8_t *newcontents = NULL; |
| int ret = 2; |
| |
| /* |
| * If the region is not erase-block aligned, merge current flash con- |
| * tents into `info->curcontents` and a new buffer `newc`. The former |
| * is necessary since we have no guarantee that the full erase block |
| * was already read into `info->curcontents`. For the latter a new |
| * buffer is used since `info->newcontents` might contain data for |
| * other unaligned regions that touch this erase block too. |
| */ |
| if (region_unaligned) { |
| msg_cdbg("R"); |
| uint8_t *const newc = malloc(erase_len); |
| if (!newc) { |
| msg_cerr("Out of memory!\n"); |
| return 1; |
| } |
| memcpy(newc, info->newcontents + info->erase_start, erase_len); |
| |
| /* Merge data preceding the current region. */ |
| if (info->region_start > info->erase_start) { |
| const chipoff_t start = info->erase_start; |
| const chipsize_t len = info->region_start - info->erase_start; |
| if (flashctx->chip->read(flashctx, newc, start, len)) { |
| msg_cerr("Can't read! Aborting.\n"); |
| goto _free_ret; |
| } |
| memcpy(info->curcontents + start, newc, len); |
| } |
| /* Merge data following the current region. */ |
| if (info->erase_end > info->region_end) { |
| const chipoff_t start = info->region_end + 1; |
| const chipoff_t rel_start = start - info->erase_start; /* within this erase block */ |
| const chipsize_t len = info->erase_end - info->region_end; |
| if (flashctx->chip->read(flashctx, newc + rel_start, start, len)) { |
| msg_cerr("Can't read! Aborting.\n"); |
| goto _free_ret; |
| } |
| memcpy(info->curcontents + start, newc + rel_start, len); |
| } |
| |
| newcontents = newc; |
| } else { |
| newcontents = info->newcontents + info->erase_start; |
| } |
| |
| ret = 1; |
| bool skipped = true; |
| uint8_t *const curcontents = info->curcontents + info->erase_start; |
| const uint8_t erased_value = ERASED_VALUE(flashctx); |
| if (!(flashctx->chip->feature_bits & FEATURE_NO_ERASE) && |
| need_erase(curcontents, newcontents, erase_len, flashctx->chip->gran, erased_value)) { |
| if (erase_block(flashctx, info, erasefn)) |
| goto _free_ret; |
| /* Erase was successful. Adjust curcontents. */ |
| memset(curcontents, erased_value, erase_len); |
| skipped = false; |
| } |
| |
| unsigned int starthere = 0, lenhere = 0, writecount = 0; |
| /* get_next_write() sets starthere to a new value after the call. */ |
| while ((lenhere = get_next_write(curcontents + starthere, newcontents + starthere, |
| erase_len - starthere, &starthere, flashctx->chip->gran))) { |
| if (!writecount++) |
| msg_cdbg("W"); |
| /* Needs the partial write function signature. */ |
| if (flashctx->chip->write(flashctx, newcontents + starthere, |
| info->erase_start + starthere, lenhere)) |
| goto _free_ret; |
| starthere += lenhere; |
| skipped = false; |
| } |
| if (skipped) |
| msg_cdbg("S"); |
| else |
| all_skipped = false; |
| |
| /* Update curcontents, other regions with overlapping erase blocks |
| might rely on this. */ |
| memcpy(curcontents, newcontents, erase_len); |
| ret = 0; |
| |
| _free_ret: |
| if (region_unaligned) |
| free((void *)newcontents); |
| return ret; |
| } |
| |
| /** |
| * @brief Writes the included layout regions from a given image. |
| * |
| * If there is no layout set in the given flash context, the whole image |
| * will be written. |
| * |
| * @param flashctx Flash context to be used. |
| * @param curcontents A buffer of full chip size with current chip contents of included regions. |
| * @param newcontents The new image to be written. |
| * @return 0 on success, |
| * 1 if anything has gone wrong. |
| */ |
| static int write_by_layout(struct flashctx *const flashctx, |
| void *const curcontents, const void *const newcontents) |
| { |
| struct walk_info info; |
| info.curcontents = curcontents; |
| info.newcontents = newcontents; |
| return walk_by_layout(flashctx, &info, read_erase_write_block); |
| } |
| |
| /** |
| * @brief Compares the included layout regions with content from a buffer. |
| * |
| * If there is no layout set in the given flash context, the whole chip's |
| * contents will be compared. |
| * |
| * @param flashctx Flash context to be used. |
| * @param curcontents A buffer of full chip size to read current chip contents into. |
| * @param newcontents The new image to compare to. |
| * @return 0 on success, |
| * 1 if reading failed, |
| * 3 if the contents don't match. |
| */ |
| static int verify_by_layout(struct flashctx *const flashctx, |
| void *const curcontents, const uint8_t *const newcontents) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| |
| size_t i; |
| for (i = 0; i < layout->num_entries; ++i) { |
| if (!layout->entries[i].included) |
| continue; |
| |
| const chipoff_t region_start = layout->entries[i].start; |
| const chipsize_t region_len = layout->entries[i].end - layout->entries[i].start + 1; |
| |
| if (flashctx->chip->read(flashctx, curcontents + region_start, region_start, region_len)) |
| return 1; |
| if (compare_range(newcontents + region_start, curcontents + region_start, |
| region_start, region_len)) |
| return 3; |
| } |
| return 0; |
| } |
| |
| static void nonfatal_help_message(void) |
| { |
| msg_gerr("Good, writing to the flash chip apparently didn't do anything.\n"); |
| #if CONFIG_INTERNAL == 1 |
| if (programmer == PROGRAMMER_INTERNAL) |
| msg_gerr("This means we have to add special support for your board, programmer or flash\n" |
| "chip. Please report this on IRC at chat.freenode.net (channel #flashrom) or\n" |
| "mail flashrom@flashrom.org, thanks!\n" |
| "-------------------------------------------------------------------------------\n" |
| "You may now reboot or simply leave the machine running.\n"); |
| else |
| #endif |
| msg_gerr("Please check the connections (especially those to write protection pins) between\n" |
| "the programmer and the flash chip. If you think the error is caused by flashrom\n" |
| "please report this on IRC at chat.freenode.net (channel #flashrom) or\n" |
| "mail flashrom@flashrom.org, thanks!\n"); |
| } |
| |
| static void emergency_help_message(void) |
| { |
| msg_gerr("Your flash chip is in an unknown state.\n"); |
| #if CONFIG_INTERNAL == 1 |
| if (programmer == PROGRAMMER_INTERNAL) |
| msg_gerr("Get help on IRC at chat.freenode.net (channel #flashrom) or\n" |
| "mail flashrom@flashrom.org with the subject \"FAILED: <your board name>\"!\n" |
| "-------------------------------------------------------------------------------\n" |
| "DO NOT REBOOT OR POWEROFF!\n"); |
| else |
| #endif |
| msg_gerr("Please report this on IRC at chat.freenode.net (channel #flashrom) or\n" |
| "mail flashrom@flashrom.org, thanks!\n"); |
| } |
| |
| /* The way to go if you want a delimited list of programmers */ |
| void list_programmers(const char *delim) |
| { |
| enum programmer p; |
| for (p = 0; p < PROGRAMMER_INVALID; p++) { |
| msg_ginfo("%s", programmer_table[p].name); |
| if (p < PROGRAMMER_INVALID - 1) |
| msg_ginfo("%s", delim); |
| } |
| msg_ginfo("\n"); |
| } |
| |
| void list_programmers_linebreak(int startcol, int cols, int paren) |
| { |
| const char *pname; |
| int pnamelen; |
| int remaining = 0, firstline = 1; |
| enum programmer p; |
| int i; |
| |
| for (p = 0; p < PROGRAMMER_INVALID; p++) { |
| pname = programmer_table[p].name; |
| pnamelen = strlen(pname); |
| if (remaining - pnamelen - 2 < 0) { |
| if (firstline) |
| firstline = 0; |
| else |
| msg_ginfo("\n"); |
| for (i = 0; i < startcol; i++) |
| msg_ginfo(" "); |
| remaining = cols - startcol; |
| } else { |
| msg_ginfo(" "); |
| remaining--; |
| } |
| if (paren && (p == 0)) { |
| msg_ginfo("("); |
| remaining--; |
| } |
| msg_ginfo("%s", pname); |
| remaining -= pnamelen; |
| if (p < PROGRAMMER_INVALID - 1) { |
| msg_ginfo(","); |
| remaining--; |
| } else { |
| if (paren) |
| msg_ginfo(")"); |
| } |
| } |
| } |
| |
| void print_sysinfo(void) |
| { |
| #if IS_WINDOWS |
| SYSTEM_INFO si; |
| OSVERSIONINFOEX osvi; |
| |
| memset(&si, 0, sizeof(SYSTEM_INFO)); |
| memset(&osvi, 0, sizeof(OSVERSIONINFOEX)); |
| msg_ginfo(" on Windows"); |
| /* Tell Windows which version of the structure we want. */ |
| osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX); |
| if (GetVersionEx((OSVERSIONINFO*) &osvi)) |
| msg_ginfo(" %lu.%lu", osvi.dwMajorVersion, osvi.dwMinorVersion); |
| else |
| msg_ginfo(" unknown version"); |
| GetSystemInfo(&si); |
| switch (si.wProcessorArchitecture) { |
| case PROCESSOR_ARCHITECTURE_AMD64: |
| msg_ginfo(" (x86_64)"); |
| break; |
| case PROCESSOR_ARCHITECTURE_INTEL: |
| msg_ginfo(" (x86)"); |
| break; |
| default: |
| msg_ginfo(" (unknown arch)"); |
| break; |
| } |
| #elif HAVE_UTSNAME == 1 |
| struct utsname osinfo; |
| |
| uname(&osinfo); |
| msg_ginfo(" on %s %s (%s)", osinfo.sysname, osinfo.release, |
| osinfo.machine); |
| #else |
| msg_ginfo(" on unknown machine"); |
| #endif |
| } |
| |
| void print_buildinfo(void) |
| { |
| msg_gdbg("flashrom was built with"); |
| #if NEED_PCI == 1 |
| #ifdef PCILIB_VERSION |
| msg_gdbg(" libpci %s,", PCILIB_VERSION); |
| #else |
| msg_gdbg(" unknown PCI library,"); |
| #endif |
| #endif |
| #ifdef __clang__ |
| msg_gdbg(" LLVM Clang"); |
| #ifdef __clang_version__ |
| msg_gdbg(" %s,", __clang_version__); |
| #else |
| msg_gdbg(" unknown version (before r102686),"); |
| #endif |
| #elif defined(__GNUC__) |
| msg_gdbg(" GCC"); |
| #ifdef __VERSION__ |
| msg_gdbg(" %s,", __VERSION__); |
| #else |
| msg_gdbg(" unknown version,"); |
| #endif |
| #else |
| msg_gdbg(" unknown compiler,"); |
| #endif |
| #if defined (__FLASHROM_LITTLE_ENDIAN__) |
| msg_gdbg(" little endian"); |
| #elif defined (__FLASHROM_BIG_ENDIAN__) |
| msg_gdbg(" big endian"); |
| #else |
| #error Endianness could not be determined |
| #endif |
| msg_gdbg("\n"); |
| } |
| |
| void print_version(void) |
| { |
| msg_ginfo("flashrom %s", flashrom_version); |
| print_sysinfo(); |
| msg_ginfo("\n"); |
| } |
| |
| void print_banner(void) |
| { |
| msg_ginfo("flashrom is free software, get the source code at " |
| "https://flashrom.org\n"); |
| msg_ginfo("\n"); |
| } |
| |
| int selfcheck(void) |
| { |
| unsigned int i; |
| int ret = 0; |
| |
| /* Safety check. Instead of aborting after the first error, check |
| * if more errors exist. |
| */ |
| if (ARRAY_SIZE(programmer_table) - 1 != PROGRAMMER_INVALID) { |
| msg_gerr("Programmer table miscompilation!\n"); |
| ret = 1; |
| } |
| for (i = 0; i < PROGRAMMER_INVALID; i++) { |
| const struct programmer_entry p = programmer_table[i]; |
| if (p.name == NULL) { |
| msg_gerr("All programmers need a valid name, but the one with index %d does not!\n", i); |
| ret = 1; |
| /* This might hide other problems with this programmer, but allows for better error |
| * messages below without jumping through hoops. */ |
| continue; |
| } |
| switch (p.type) { |
| case USB: |
| case PCI: |
| case OTHER: |
| if (p.devs.note == NULL) { |
| if (strcmp("internal", p.name) == 0) |
| break; /* This one has its device list stored separately. */ |
| msg_gerr("Programmer %s has neither a device list nor a textual description!\n", |
| p.name); |
| ret = 1; |
| } |
| break; |
| default: |
| msg_gerr("Programmer %s does not have a valid type set!\n", p.name); |
| ret = 1; |
| break; |
| } |
| if (p.init == NULL) { |
| msg_gerr("Programmer %s does not have a valid init function!\n", p.name); |
| ret = 1; |
| } |
| if (p.delay == NULL) { |
| msg_gerr("Programmer %s does not have a valid delay function!\n", p.name); |
| ret = 1; |
| } |
| if (p.map_flash_region == NULL) { |
| msg_gerr("Programmer %s does not have a valid map_flash_region function!\n", p.name); |
| ret = 1; |
| } |
| if (p.unmap_flash_region == NULL) { |
| msg_gerr("Programmer %s does not have a valid unmap_flash_region function!\n", p.name); |
| ret = 1; |
| } |
| } |
| |
| /* It would be favorable if we could check for the correct layout (especially termination) of various |
| * constant arrays: flashchips, chipset_enables, board_matches, boards_known, laptops_known. |
| * They are all defined as externs in this compilation unit so we don't know their sizes which vary |
| * depending on compiler flags, e.g. the target architecture, and can sometimes be 0. |
| * For 'flashchips' we export the size explicitly to work around this and to be able to implement the |
| * checks below. */ |
| if (flashchips_size <= 1 || flashchips[flashchips_size - 1].name != NULL) { |
| msg_gerr("Flashchips table miscompilation!\n"); |
| ret = 1; |
| } else { |
| for (i = 0; i < flashchips_size - 1; i++) { |
| const struct flashchip *chip = &flashchips[i]; |
| if (chip->vendor == NULL || chip->name == NULL || chip->bustype == BUS_NONE) { |
| ret = 1; |
| msg_gerr("ERROR: Some field of flash chip #%d (%s) is misconfigured.\n" |
| "Please report a bug at flashrom@flashrom.org\n", i, |
| chip->name == NULL ? "unnamed" : chip->name); |
| } |
| if (selfcheck_eraseblocks(chip)) { |
| ret = 1; |
| } |
| } |
| } |
| |
| #if CONFIG_INTERNAL == 1 |
| ret |= selfcheck_board_enables(); |
| #endif |
| |
| /* TODO: implement similar sanity checks for other arrays where deemed necessary. */ |
| return ret; |
| } |
| |
| /* FIXME: This function signature needs to be improved once doit() has a better |
| * function signature. |
| */ |
| int chip_safety_check(const struct flashctx *flash, int force, int read_it, int write_it, int erase_it, |
| int verify_it) |
| { |
| const struct flashchip *chip = flash->chip; |
| |
| if (!programmer_may_write && (write_it || erase_it)) { |
| msg_perr("Write/erase is not working yet on your programmer in " |
| "its current configuration.\n"); |
| /* --force is the wrong approach, but it's the best we can do |
| * until the generic programmer parameter parser is merged. |
| */ |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| |
| if (read_it || erase_it || write_it || verify_it) { |
| /* Everything needs read. */ |
| if (chip->tested.read == BAD) { |
| msg_cerr("Read is not working on this chip. "); |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| if (!chip->read) { |
| msg_cerr("flashrom has no read function for this " |
| "flash chip.\n"); |
| return 1; |
| } |
| } |
| if (erase_it || write_it) { |
| /* Write needs erase. */ |
| if (chip->tested.erase == NA) { |
| msg_cerr("Erase is not possible on this chip.\n"); |
| return 1; |
| } |
| if (chip->tested.erase == BAD) { |
| msg_cerr("Erase is not working on this chip. "); |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| if(count_usable_erasers(flash) == 0) { |
| msg_cerr("flashrom has no erase function for this " |
| "flash chip.\n"); |
| return 1; |
| } |
| } |
| if (write_it) { |
| if (chip->tested.write == NA) { |
| msg_cerr("Write is not possible on this chip.\n"); |
| return 1; |
| } |
| if (chip->tested.write == BAD) { |
| msg_cerr("Write is not working on this chip. "); |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| if (!chip->write) { |
| msg_cerr("flashrom has no write function for this " |
| "flash chip.\n"); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| int prepare_flash_access(struct flashctx *const flash, |
| const bool read_it, const bool write_it, |
| const bool erase_it, const bool verify_it) |
| { |
| if (chip_safety_check(flash, flash->flags.force, read_it, write_it, erase_it, verify_it)) { |
| msg_cerr("Aborting.\n"); |
| return 1; |
| } |
| |
| if (flash->layout == get_global_layout() && normalize_romentries(flash)) { |
| msg_cerr("Requested regions can not be handled. Aborting.\n"); |
| return 1; |
| } |
| |
| if (map_flash(flash) != 0) |
| return 1; |
| |
| /* Given the existence of read locks, we want to unlock for read, |
| erase and write. */ |
| if (flash->chip->unlock) |
| flash->chip->unlock(flash); |
| |
| flash->address_high_byte = -1; |
| flash->in_4ba_mode = false; |
| |
| /* Enable/disable 4-byte addressing mode if flash chip supports it */ |
| if (flash->chip->feature_bits & (FEATURE_4BA_ENTER | FEATURE_4BA_ENTER_WREN | FEATURE_4BA_ENTER_EAR7)) { |
| int ret; |
| if (spi_master_4ba(flash)) |
| ret = spi_enter_4ba(flash); |
| else |
| ret = spi_exit_4ba(flash); |
| if (ret) { |
| msg_cerr("Failed to set correct 4BA mode! Aborting.\n"); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void finalize_flash_access(struct flashctx *const flash) |
| { |
| unmap_flash(flash); |
| } |
| |
| /** |
| * @addtogroup flashrom-flash |
| * @{ |
| */ |
| |
| /** |
| * @brief Erase the specified ROM chip. |
| * |
| * If a layout is set in the given flash context, only included regions |
| * will be erased. |
| * |
| * @param flashctx The context of the flash chip to erase. |
| * @return 0 on success. |
| */ |
| int flashrom_flash_erase(struct flashctx *const flashctx) |
| { |
| if (prepare_flash_access(flashctx, false, false, true, false)) |
| return 1; |
| |
| const int ret = erase_by_layout(flashctx); |
| |
| finalize_flash_access(flashctx); |
| |
| return ret; |
| } |
| |
| /** @} */ /* end flashrom-flash */ |
| |
| /** |
| * @defgroup flashrom-ops Operations |
| * @{ |
| */ |
| |
| /** |
| * @brief Read the current image from the specified ROM chip. |
| * |
| * If a layout is set in the specified flash context, only included regions |
| * will be read. |
| * |
| * @param flashctx The context of the flash chip. |
| * @param buffer Target buffer to write image to. |
| * @param buffer_len Size of target buffer in bytes. |
| * @return 0 on success, |
| * 2 if buffer_len is too short for the flash chip's contents, |
| * or 1 on any other failure. |
| */ |
| int flashrom_image_read(struct flashctx *const flashctx, void *const buffer, const size_t buffer_len) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| |
| if (flash_size > buffer_len) |
| return 2; |
| |
| if (prepare_flash_access(flashctx, true, false, false, false)) |
| return 1; |
| |
| msg_cinfo("Reading flash... "); |
| |
| int ret = 1; |
| if (read_by_layout(flashctx, buffer)) { |
| msg_cerr("Read operation failed!\n"); |
| msg_cinfo("FAILED.\n"); |
| goto _finalize_ret; |
| } |
| msg_cinfo("done.\n"); |
| ret = 0; |
| |
| _finalize_ret: |
| finalize_flash_access(flashctx); |
| return ret; |
| } |
| |
| static void combine_image_by_layout(const struct flashctx *const flashctx, |
| uint8_t *const newcontents, const uint8_t *const oldcontents) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| |
| size_t i; |
| for (i = 0; i < layout->num_entries; ++i) { |
| if (layout->entries[i].included) |
| continue; |
| |
| const chipoff_t region_start = layout->entries[i].start; |
| const chipsize_t region_len = layout->entries[i].end - layout->entries[i].start + 1; |
| |
| memcpy(newcontents + region_start, oldcontents + region_start, region_len); |
| } |
| } |
| |
| /** |
| * @brief Write the specified image to the ROM chip. |
| * |
| * If a layout is set in the specified flash context, only erase blocks |
| * containing included regions will be touched. |
| * |
| * @param flashctx The context of the flash chip. |
| * @param buffer Source buffer to read image from (may be altered for full verification). |
| * @param buffer_len Size of source buffer in bytes. |
| * @param refbuffer If given, assume flash chip contains same data as `refbuffer`. |
| * @return 0 on success, |
| * 4 if buffer_len doesn't match the size of the flash chip, |
| * 3 if write was tried but nothing has changed, |
| * 2 if write failed and flash contents changed, |
| * or 1 on any other failure. |
| */ |
| int flashrom_image_write(struct flashctx *const flashctx, void *const buffer, const size_t buffer_len, |
| const void *const refbuffer) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| const bool verify_all = flashctx->flags.verify_whole_chip; |
| const bool verify = flashctx->flags.verify_after_write; |
| |
| if (buffer_len != flash_size) |
| return 4; |
| |
| int ret = 1; |
| |
| uint8_t *const newcontents = buffer; |
| const uint8_t *const refcontents = refbuffer; |
| uint8_t *const curcontents = malloc(flash_size); |
| uint8_t *oldcontents = NULL; |
| if (verify_all) |
| oldcontents = malloc(flash_size); |
| if (!curcontents || (verify_all && !oldcontents)) { |
| msg_gerr("Out of memory!\n"); |
| goto _free_ret; |
| } |
| |
| #if CONFIG_INTERNAL == 1 |
| if (programmer == PROGRAMMER_INTERNAL && cb_check_image(newcontents, flash_size) < 0) { |
| if (flashctx->flags.force_boardmismatch) { |
| msg_pinfo("Proceeding anyway because user forced us to.\n"); |
| } else { |
| msg_perr("Aborting. You can override this with " |
| "-p internal:boardmismatch=force.\n"); |
| goto _free_ret; |
| } |
| } |
| #endif |
| |
| if (prepare_flash_access(flashctx, false, true, false, verify)) |
| goto _free_ret; |
| |
| /* If given, assume flash chip contains same data as `refcontents`. */ |
| if (refcontents) { |
| msg_cinfo("Assuming old flash chip contents as ref-file...\n"); |
| memcpy(curcontents, refcontents, flash_size); |
| if (oldcontents) |
| memcpy(oldcontents, refcontents, flash_size); |
| } else { |
| /* |
| * Read the whole chip to be able to check whether regions need to be |
| * erased and to give better diagnostics in case write fails. |
| * The alternative is to read only the regions which are to be |
| * preserved, but in that case we might perform unneeded erase which |
| * takes time as well. |
| */ |
| msg_cinfo("Reading old flash chip contents... "); |
| if (verify_all) { |
| if (flashctx->chip->read(flashctx, oldcontents, 0, flash_size)) { |
| msg_cinfo("FAILED.\n"); |
| goto _finalize_ret; |
| } |
| memcpy(curcontents, oldcontents, flash_size); |
| } else { |
| if (read_by_layout(flashctx, curcontents)) { |
| msg_cinfo("FAILED.\n"); |
| goto _finalize_ret; |
| } |
| } |
| msg_cinfo("done.\n"); |
| } |
| |
| if (write_by_layout(flashctx, curcontents, newcontents)) { |
| msg_cerr("Uh oh. Erase/write failed. "); |
| ret = 2; |
| if (verify_all) { |
| msg_cerr("Checking if anything has changed.\n"); |
| msg_cinfo("Reading current flash chip contents... "); |
| if (!flashctx->chip->read(flashctx, curcontents, 0, flash_size)) { |
| msg_cinfo("done.\n"); |
| if (!memcmp(oldcontents, curcontents, flash_size)) { |
| nonfatal_help_message(); |
| goto _finalize_ret; |
| } |
| msg_cerr("Apparently at least some data has changed.\n"); |
| } else |
| msg_cerr("Can't even read anymore!\n"); |
| emergency_help_message(); |
| goto _finalize_ret; |
| } else { |
| msg_cerr("\n"); |
| } |
| emergency_help_message(); |
| goto _finalize_ret; |
| } |
| |
| /* Verify only if we actually changed something. */ |
| if (verify && !all_skipped) { |
| const struct flashrom_layout *const layout_bak = flashctx->layout; |
| |
| msg_cinfo("Verifying flash... "); |
| |
| /* Work around chips which need some time to calm down. */ |
| programmer_delay(1000*1000); |
| |
| if (verify_all) { |
| combine_image_by_layout(flashctx, newcontents, oldcontents); |
| flashctx->layout = NULL; |
| } |
| ret = verify_by_layout(flashctx, curcontents, newcontents); |
| flashctx->layout = layout_bak; |
| /* If we tried to write, and verification now fails, we |
| might have an emergency situation. */ |
| if (ret) |
| emergency_help_message(); |
| else |
| msg_cinfo("VERIFIED.\n"); |
| } else { |
| /* We didn't change anything. */ |
| ret = 0; |
| } |
| |
| _finalize_ret: |
| finalize_flash_access(flashctx); |
| _free_ret: |
| free(oldcontents); |
| free(curcontents); |
| return ret; |
| } |
| |
| /** |
| * @brief Verify the ROM chip's contents with the specified image. |
| * |
| * If a layout is set in the specified flash context, only included regions |
| * will be verified. |
| * |
| * @param flashctx The context of the flash chip. |
| * @param buffer Source buffer to verify with. |
| * @param buffer_len Size of source buffer in bytes. |
| * @return 0 on success, |
| * 3 if the chip's contents don't match, |
| * 2 if buffer_len doesn't match the size of the flash chip, |
| * or 1 on any other failure. |
| */ |
| int flashrom_image_verify(struct flashctx *const flashctx, const void *const buffer, const size_t buffer_len) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| |
| if (buffer_len != flash_size) |
| return 2; |
| |
| const uint8_t *const newcontents = buffer; |
| uint8_t *const curcontents = malloc(flash_size); |
| if (!curcontents) { |
| msg_gerr("Out of memory!\n"); |
| return 1; |
| } |
| |
| int ret = 1; |
| |
| if (prepare_flash_access(flashctx, false, false, false, true)) |
| goto _free_ret; |
| |
| msg_cinfo("Verifying flash... "); |
| ret = verify_by_layout(flashctx, curcontents, newcontents); |
| if (!ret) |
| msg_cinfo("VERIFIED.\n"); |
| |
| finalize_flash_access(flashctx); |
| _free_ret: |
| free(curcontents); |
| return ret; |
| } |
| |
| /** @} */ /* end flashrom-ops */ |
| |
| int do_read(struct flashctx *const flash, const char *const filename) |
| { |
| if (prepare_flash_access(flash, true, false, false, false)) |
| return 1; |
| |
| const int ret = read_flash_to_file(flash, filename); |
| |
| finalize_flash_access(flash); |
| |
| return ret; |
| } |
| |
| int do_erase(struct flashctx *const flash) |
| { |
| const int ret = flashrom_flash_erase(flash); |
| |
| /* |
| * FIXME: Do we really want the scary warning if erase failed? |
| * After all, after erase the chip is either blank or partially |
| * blank or it has the old contents. A blank chip won't boot, |
| * so if the user wanted erase and reboots afterwards, the user |
| * knows very well that booting won't work. |
| */ |
| if (ret) |
| emergency_help_message(); |
| |
| return ret; |
| } |
| |
| int do_write(struct flashctx *const flash, const char *const filename, const char *const referencefile) |
| { |
| const size_t flash_size = flash->chip->total_size * 1024; |
| int ret = 1; |
| |
| uint8_t *const newcontents = malloc(flash_size); |
| uint8_t *const refcontents = referencefile ? malloc(flash_size) : NULL; |
| |
| if (!newcontents || (referencefile && !refcontents)) { |
| msg_gerr("Out of memory!\n"); |
| goto _free_ret; |
| } |
| |
| if (read_buf_from_file(newcontents, flash_size, filename)) |
| goto _free_ret; |
| |
| if (referencefile) { |
| if (read_buf_from_file(refcontents, flash_size, referencefile)) |
| goto _free_ret; |
| } |
| |
| ret = flashrom_image_write(flash, newcontents, flash_size, refcontents); |
| |
| _free_ret: |
| free(refcontents); |
| free(newcontents); |
| return ret; |
| } |
| |
| int do_verify(struct flashctx *const flash, const char *const filename) |
| { |
| const size_t flash_size = flash->chip->total_size * 1024; |
| int ret = 1; |
| |
| uint8_t *const newcontents = malloc(flash_size); |
| if (!newcontents) { |
| msg_gerr("Out of memory!\n"); |
| goto _free_ret; |
| } |
| |
| if (read_buf_from_file(newcontents, flash_size, filename)) |
| goto _free_ret; |
| |
| ret = flashrom_image_verify(flash, newcontents, flash_size); |
| |
| _free_ret: |
| free(newcontents); |
| return ret; |
| } |