| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2010 Carl-Daniel Hailfinger |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <usb.h> |
| #include "flash.h" |
| #include "chipdrivers.h" |
| #include "programmer.h" |
| #include "spi.h" |
| |
| #define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z) |
| #define DEFAULT_TIMEOUT 3000 |
| static usb_dev_handle *dediprog_handle; |
| static int dediprog_firmwareversion; |
| static int dediprog_endpoint; |
| |
| #if 0 |
| /* Might be useful for other pieces of code as well. */ |
| static void print_hex(void *buf, size_t len) |
| { |
| size_t i; |
| |
| for (i = 0; i < len; i++) |
| msg_pdbg(" %02x", ((uint8_t *)buf)[i]); |
| } |
| #endif |
| |
| /* Might be useful for other USB devices as well. static for now. */ |
| static struct usb_device *get_device_by_vid_pid(uint16_t vid, uint16_t pid) |
| { |
| struct usb_bus *bus; |
| struct usb_device *dev; |
| |
| for (bus = usb_get_busses(); bus; bus = bus->next) |
| for (dev = bus->devices; dev; dev = dev->next) |
| if ((dev->descriptor.idVendor == vid) && |
| (dev->descriptor.idProduct == pid)) |
| return dev; |
| |
| return NULL; |
| } |
| |
| //int usb_control_msg(usb_dev_handle *dev, int requesttype, int request, int value, int index, char *bytes, int size, int timeout); |
| |
| /* Set/clear LEDs on dediprog */ |
| #define PASS_ON (0 << 0) |
| #define PASS_OFF (1 << 0) |
| #define BUSY_ON (0 << 1) |
| #define BUSY_OFF (1 << 1) |
| #define ERROR_ON (0 << 2) |
| #define ERROR_OFF (1 << 2) |
| static int current_led_status = -1; |
| |
| static int dediprog_set_leds(int leds) |
| { |
| int ret, target_leds; |
| |
| if (leds < 0 || leds > 7) |
| leds = 0; // Bogus value, enable all LEDs |
| |
| if (leds == current_led_status) |
| return 0; |
| |
| /* Older Dediprogs with 2.x.x and 3.x.x firmware only had |
| * two LEDs, and they were reversed. So map them around if |
| * we have an old device. On those devices the LEDs map as |
| * follows: |
| * bit 2 == 0: green light is on. |
| * bit 0 == 0: red light is on. |
| */ |
| if (dediprog_firmwareversion < FIRMWARE_VERSION(5,0,0)) { |
| target_leds = ((leds & ERROR_OFF) >> 2) | |
| ((leds & PASS_OFF) << 2); |
| } else { |
| target_leds = leds; |
| } |
| |
| ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, target_leds, |
| NULL, 0x0, DEFAULT_TIMEOUT); |
| if (ret != 0x0) { |
| msg_perr("Command Set LED 0x%x failed (%s)!\n", |
| leds, usb_strerror()); |
| return 1; |
| } |
| |
| current_led_status = leds; |
| |
| return 0; |
| } |
| |
| static int dediprog_set_spi_voltage(int millivolt) |
| { |
| int ret; |
| uint16_t voltage_selector; |
| |
| switch (millivolt) { |
| case 0: |
| /* Admittedly this one is an assumption. */ |
| voltage_selector = 0x0; |
| break; |
| case 1800: |
| voltage_selector = 0x12; |
| break; |
| case 2500: |
| voltage_selector = 0x11; |
| break; |
| case 3500: |
| voltage_selector = 0x10; |
| break; |
| default: |
| msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt); |
| return 1; |
| } |
| msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000, |
| millivolt % 1000); |
| |
| ret = usb_control_msg(dediprog_handle, 0x42, 0x9, voltage_selector, |
| 0xff, NULL, 0x0, DEFAULT_TIMEOUT); |
| if (ret != 0x0) { |
| msg_perr("Command Set SPI Voltage 0x%x failed!\n", |
| voltage_selector); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #if 0 |
| /* After dediprog_set_spi_speed, the original app always calls |
| * dediprog_set_spi_voltage(0) and then |
| * dediprog_check_devicestring() four times in a row. |
| * After that, dediprog_command_a() is called. |
| * This looks suspiciously like the microprocessor in the SF100 has to be |
| * restarted/reinitialized in case the speed changes. |
| */ |
| static int dediprog_set_spi_speed(uint16_t speed) |
| { |
| int ret; |
| unsigned int khz; |
| |
| /* Case 1 and 2 are in weird order. Probably an organically "grown" |
| * interface. |
| * Base frequency is 24000 kHz, divisors are (in order) |
| * 1, 3, 2, 8, 11, 16, 32, 64. |
| */ |
| switch (speed) { |
| case 0x0: |
| khz = 24000; |
| break; |
| case 0x1: |
| khz = 8000; |
| break; |
| case 0x2: |
| khz = 12000; |
| break; |
| case 0x3: |
| khz = 3000; |
| break; |
| case 0x4: |
| khz = 2180; |
| break; |
| case 0x5: |
| khz = 1500; |
| break; |
| case 0x6: |
| khz = 750; |
| break; |
| case 0x7: |
| khz = 375; |
| break; |
| default: |
| msg_perr("Unknown frequency selector 0x%x! Aborting.\n", speed); |
| return 1; |
| } |
| msg_pdbg("Setting SPI speed to %u kHz\n", khz); |
| |
| ret = usb_control_msg(dediprog_handle, 0x42, 0x61, speed, 0xff, NULL, |
| 0x0, DEFAULT_TIMEOUT); |
| if (ret != 0x0) { |
| msg_perr("Command Set SPI Speed 0x%x failed!\n", speed); |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| /* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes. |
| * @start start address |
| * @len length |
| * @return 0 on success, 1 on failure |
| */ |
| static int dediprog_spi_bulk_read(struct flashchip *flash, uint8_t *buf, |
| int start, int len) |
| { |
| int ret; |
| int i; |
| /* chunksize must be 512, other sizes will NOT work at all. */ |
| const int chunksize = 0x200; |
| const int count = len / chunksize; |
| const char count_and_chunk[] = {count & 0xff, |
| (count >> 8) & 0xff, |
| chunksize & 0xff, |
| (chunksize >> 8) & 0xff}; |
| |
| if ((start % chunksize) || (len % chunksize)) { |
| msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug " |
| "at flashrom@flashrom.org\n", __func__, start, len); |
| return 1; |
| } |
| |
| /* No idea if the hardware can handle empty reads, so chicken out. */ |
| if (!len) |
| return 0; |
| /* Command Read SPI Bulk. No idea which read command is used on the |
| * SPI side. |
| */ |
| ret = usb_control_msg(dediprog_handle, 0x42, 0x20, start % 0x10000, |
| start / 0x10000, (char *)count_and_chunk, |
| sizeof(count_and_chunk), DEFAULT_TIMEOUT); |
| if (ret != sizeof(count_and_chunk)) { |
| msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret, |
| usb_strerror()); |
| return 1; |
| } |
| |
| for (i = 0; i < count; i++) { |
| ret = usb_bulk_read(dediprog_handle, 0x80 | dediprog_endpoint, |
| (char *)buf + i * chunksize, chunksize, |
| DEFAULT_TIMEOUT); |
| if (ret != chunksize) { |
| msg_perr("SPI bulk read %i failed, expected %i, got %i " |
| "%s!\n", i, chunksize, ret, usb_strerror()); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dediprog_spi_read(struct flashchip *flash, uint8_t *buf, int start, |
| int len) |
| { |
| int ret; |
| /* chunksize must be 512, other sizes will NOT work at all. */ |
| const int chunksize = 0x200; |
| int residue = start % chunksize ? chunksize - start % chunksize : 0; |
| int bulklen; |
| |
| dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF); |
| |
| if (residue) { |
| msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", |
| start, residue); |
| ret = spi_read_chunked(flash, buf, start, residue, 16); |
| if (ret) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return ret; |
| } |
| } |
| |
| /* Round down. */ |
| bulklen = (len - residue) / chunksize * chunksize; |
| ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue, |
| bulklen); |
| if (ret) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return ret; |
| } |
| |
| len -= residue + bulklen; |
| if (len) { |
| msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", |
| start, len); |
| ret = spi_read_chunked(flash, buf + residue + bulklen, |
| start + residue + bulklen, len, 16); |
| if (ret) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return ret; |
| } |
| } |
| |
| dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF); |
| return 0; |
| } |
| |
| static int dediprog_spi_write_256(struct flashchip *flash, uint8_t *buf, |
| int start, int len) |
| { |
| int ret; |
| |
| dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF); |
| |
| /* No idea about the real limit. Maybe 12, maybe more, maybe less. */ |
| ret = spi_write_chunked(flash, buf, start, len, 12); |
| |
| if (ret) |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| else |
| dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF); |
| |
| return ret; |
| } |
| |
| static int dediprog_spi_send_command(unsigned int writecnt, unsigned int readcnt, |
| const unsigned char *writearr, unsigned char *readarr) |
| { |
| int ret; |
| |
| msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt); |
| /* Paranoid, but I don't want to be blamed if anything explodes. */ |
| if (writecnt > 16) { |
| msg_perr("Untested writecnt=%i, aborting.\n", writecnt); |
| return 1; |
| } |
| /* 16 byte reads should work. */ |
| if (readcnt > 16) { |
| msg_perr("Untested readcnt=%i, aborting.\n", readcnt); |
| return 1; |
| } |
| |
| ret = usb_control_msg(dediprog_handle, 0x42, 0x1, 0xff, |
| readcnt ? 0x1 : 0x0, (char *)writearr, writecnt, |
| DEFAULT_TIMEOUT); |
| if (ret != writecnt) { |
| msg_perr("Send SPI failed, expected %i, got %i %s!\n", |
| writecnt, ret, usb_strerror()); |
| return 1; |
| } |
| if (!readcnt) |
| return 0; |
| memset(readarr, 0, readcnt); |
| ret = usb_control_msg(dediprog_handle, 0xc2, 0x01, 0xbb8, 0x0000, |
| (char *)readarr, readcnt, DEFAULT_TIMEOUT); |
| if (ret != readcnt) { |
| msg_perr("Receive SPI failed, expected %i, got %i %s!\n", |
| readcnt, ret, usb_strerror()); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int dediprog_check_devicestring(void) |
| { |
| int ret; |
| int fw[3]; |
| char buf[0x11]; |
| |
| /* Command Prepare Receive Device String. */ |
| memset(buf, 0, sizeof(buf)); |
| ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef03, buf, |
| 0x1, DEFAULT_TIMEOUT); |
| /* The char casting is needed to stop gcc complaining about an always true comparison. */ |
| if ((ret != 0x1) || (buf[0] != (char)0xff)) { |
| msg_perr("Unexpected response to Command Prepare Receive Device" |
| " String!\n"); |
| return 1; |
| } |
| /* Command Receive Device String. */ |
| memset(buf, 0, sizeof(buf)); |
| ret = usb_control_msg(dediprog_handle, 0xc2, 0x8, 0xff, 0xff, buf, |
| 0x10, DEFAULT_TIMEOUT); |
| if (ret != 0x10) { |
| msg_perr("Incomplete/failed Command Receive Device String!\n"); |
| return 1; |
| } |
| buf[0x10] = '\0'; |
| msg_pdbg("Found a %s\n", buf); |
| if (memcmp(buf, "SF100", 0x5)) { |
| msg_perr("Device not a SF100!\n"); |
| return 1; |
| } |
| if (sscanf(buf, "SF100 V:%d.%d.%d ", &fw[0], &fw[1], &fw[2]) != 3) { |
| msg_perr("Unexpected firmware version string!\n"); |
| return 1; |
| } |
| /* Only these versions were tested. */ |
| if (fw[0] < 2 || fw[0] > 5) { |
| msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0], |
| fw[1], fw[2]); |
| return 1; |
| } |
| dediprog_firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]); |
| return 0; |
| } |
| |
| /* Command A seems to be some sort of device init. It is either followed by |
| * dediprog_check_devicestring (often) or Command A (often) or |
| * Command F (once). |
| */ |
| static int dediprog_command_a(void) |
| { |
| int ret; |
| char buf[0x1]; |
| |
| memset(buf, 0, sizeof(buf)); |
| ret = usb_control_msg(dediprog_handle, 0xc3, 0xb, 0x0, 0x0, buf, |
| 0x1, DEFAULT_TIMEOUT); |
| if (ret < 0) { |
| msg_perr("Command A failed (%s)!\n", usb_strerror()); |
| return 1; |
| } |
| if ((ret != 0x1) || (buf[0] != 0x6f)) { |
| msg_perr("Unexpected response to Command A!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #if 0 |
| /* Something. |
| * Present in eng_detect_blink.log with firmware 3.1.8 |
| * Always preceded by Command Receive Device String |
| */ |
| static int dediprog_command_b(void) |
| { |
| int ret; |
| char buf[0x3]; |
| |
| memset(buf, 0, sizeof(buf)); |
| ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef00, buf, |
| 0x3, DEFAULT_TIMEOUT); |
| if (ret < 0) { |
| msg_perr("Command B failed (%s)!\n", usb_strerror()); |
| return 1; |
| } |
| if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) || |
| (buf[2] != 0xff)) { |
| msg_perr("Unexpected response to Command B!\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| /* Command C is only sent after dediprog_check_devicestring, but not after every |
| * invocation of dediprog_check_devicestring. It is only sent after the first |
| * dediprog_command_a(); dediprog_check_devicestring() sequence in each session. |
| * I'm tempted to call this one start_SPI_engine or finish_init. |
| */ |
| static int dediprog_command_c(void) |
| { |
| int ret; |
| |
| ret = usb_control_msg(dediprog_handle, 0x42, 0x4, 0x0, 0x0, NULL, |
| 0x0, DEFAULT_TIMEOUT); |
| if (ret != 0x0) { |
| msg_perr("Command C failed (%s)!\n", usb_strerror()); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #if 0 |
| /* Very strange. Seems to be a programmer keepalive or somesuch. |
| * Wait unsuccessfully for timeout ms to read one byte. |
| * Is usually called after setting voltage to 0. |
| * Present in all logs with Firmware 2.1.1 and 3.1.8 |
| */ |
| static int dediprog_command_f(int timeout) |
| { |
| int ret; |
| char buf[0x1]; |
| |
| memset(buf, 0, sizeof(buf)); |
| ret = usb_control_msg(dediprog_handle, 0xc2, 0x11, 0xff, 0xff, buf, |
| 0x1, timeout); |
| /* This check is most probably wrong. Command F always causes a timeout |
| * in the logs, so we should check for timeout instead of checking for |
| * success. |
| */ |
| if (ret != 0x1) { |
| msg_perr("Command F failed (%s)!\n", usb_strerror()); |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| static int parse_voltage(char *voltage) |
| { |
| char *tmp = NULL; |
| int i; |
| int millivolt = 0, fraction = 0; |
| |
| if (!voltage || !strlen(voltage)) { |
| msg_perr("Empty voltage= specified.\n"); |
| return -1; |
| } |
| millivolt = (int)strtol(voltage, &tmp, 0); |
| voltage = tmp; |
| /* Handle "," and "." as decimal point. Everything after it is assumed |
| * to be in decimal notation. |
| */ |
| if ((*voltage == '.') || (*voltage == ',')) { |
| voltage++; |
| for (i = 0; i < 3; i++) { |
| fraction *= 10; |
| /* Don't advance if the current character is invalid, |
| * but continue multiplying. |
| */ |
| if ((*voltage < '0') || (*voltage > '9')) |
| continue; |
| fraction += *voltage - '0'; |
| voltage++; |
| } |
| /* Throw away remaining digits. */ |
| voltage += strspn(voltage, "0123456789"); |
| } |
| /* The remaining string must be empty or "mV" or "V". */ |
| tolower_string(voltage); |
| |
| /* No unit or "V". */ |
| if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) { |
| millivolt *= 1000; |
| millivolt += fraction; |
| } else if (!strncmp(voltage, "mv", 2) || |
| !strncmp(voltage, "milliv", 6)) { |
| /* No adjustment. fraction is discarded. */ |
| } else { |
| /* Garbage at the end of the string. */ |
| msg_perr("Garbage voltage= specified.\n"); |
| return -1; |
| } |
| return millivolt; |
| } |
| |
| static const struct spi_programmer spi_programmer_dediprog = { |
| .type = SPI_CONTROLLER_DEDIPROG, |
| .max_data_read = MAX_DATA_UNSPECIFIED, |
| .max_data_write = MAX_DATA_UNSPECIFIED, |
| .command = dediprog_spi_send_command, |
| .multicommand = default_spi_send_multicommand, |
| .read = dediprog_spi_read, |
| .write_256 = dediprog_spi_write_256, |
| }; |
| |
| static int dediprog_shutdown(void *data) |
| { |
| msg_pspew("%s\n", __func__); |
| |
| /* URB 28. Command Set SPI Voltage to 0. */ |
| if (dediprog_set_spi_voltage(0x0)) |
| return 1; |
| |
| if (usb_release_interface(dediprog_handle, 0)) { |
| msg_perr("Could not release USB interface!\n"); |
| return 1; |
| } |
| if (usb_close(dediprog_handle)) { |
| msg_perr("Could not close USB device!\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* URB numbers refer to the first log ever captured. */ |
| int dediprog_init(void) |
| { |
| struct usb_device *dev; |
| char *voltage; |
| int millivolt = 3500; |
| int ret; |
| |
| msg_pspew("%s\n", __func__); |
| |
| voltage = extract_programmer_param("voltage"); |
| if (voltage) { |
| millivolt = parse_voltage(voltage); |
| free(voltage); |
| if (millivolt < 0) |
| return 1; |
| msg_pinfo("Setting voltage to %i mV\n", millivolt); |
| } |
| |
| /* Here comes the USB stuff. */ |
| usb_init(); |
| usb_find_busses(); |
| usb_find_devices(); |
| dev = get_device_by_vid_pid(0x0483, 0xdada); |
| if (!dev) { |
| msg_perr("Could not find a Dediprog SF100 on USB!\n"); |
| return 1; |
| } |
| msg_pdbg("Found USB device (%04x:%04x).\n", |
| dev->descriptor.idVendor, dev->descriptor.idProduct); |
| dediprog_handle = usb_open(dev); |
| ret = usb_set_configuration(dediprog_handle, 1); |
| if (ret < 0) { |
| msg_perr("Could not set USB device configuration: %i %s\n", |
| ret, usb_strerror()); |
| if (usb_close(dediprog_handle)) |
| msg_perr("Could not close USB device!\n"); |
| return 1; |
| } |
| ret = usb_claim_interface(dediprog_handle, 0); |
| if (ret < 0) { |
| msg_perr("Could not claim USB device interface %i: %i %s\n", |
| 0, ret, usb_strerror()); |
| if (usb_close(dediprog_handle)) |
| msg_perr("Could not close USB device!\n"); |
| return 1; |
| } |
| dediprog_endpoint = 2; |
| |
| if (register_shutdown(dediprog_shutdown, NULL)) |
| return 1; |
| |
| dediprog_set_leds(PASS_ON|BUSY_ON|ERROR_ON); |
| |
| /* URB 6. Command A. */ |
| if (dediprog_command_a()) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return 1; |
| } |
| /* URB 7. Command A. */ |
| if (dediprog_command_a()) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return 1; |
| } |
| /* URB 8. Command Prepare Receive Device String. */ |
| /* URB 9. Command Receive Device String. */ |
| if (dediprog_check_devicestring()) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return 1; |
| } |
| /* URB 10. Command C. */ |
| if (dediprog_command_c()) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return 1; |
| } |
| /* URB 11. Command Set SPI Voltage. */ |
| if (dediprog_set_spi_voltage(millivolt)) { |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON); |
| return 1; |
| } |
| |
| register_spi_programmer(&spi_programmer_dediprog); |
| |
| /* RE leftover, leave in until the driver is complete. */ |
| #if 0 |
| /* Execute RDID by hand if you want to test it. */ |
| dediprog_do_stuff(); |
| #endif |
| |
| dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_OFF); |
| |
| return 0; |
| } |
| |
| #if 0 |
| /* Leftovers from reverse engineering. Keep for documentation purposes until |
| * completely understood. |
| */ |
| static int dediprog_do_stuff(void) |
| { |
| char buf[0x4]; |
| /* SPI command processing starts here. */ |
| |
| /* URB 12. Command Send SPI. */ |
| /* URB 13. Command Receive SPI. */ |
| memset(buf, 0, sizeof(buf)); |
| /* JEDEC RDID */ |
| msg_pdbg("Sending RDID\n"); |
| buf[0] = JEDEC_RDID; |
| if (dediprog_spi_send_command(JEDEC_RDID_OUTSIZE, JEDEC_RDID_INSIZE, |
| (unsigned char *)buf, (unsigned char *)buf)) |
| return 1; |
| msg_pdbg("Receiving response: "); |
| print_hex(buf, JEDEC_RDID_INSIZE); |
| /* URB 14-27 are more SPI commands. */ |
| /* URB 28. Command Set SPI Voltage. */ |
| if (dediprog_set_spi_voltage(0x0)) |
| return 1; |
| /* URB 29-38. Command F, unsuccessful wait. */ |
| if (dediprog_command_f(544)) |
| return 1; |
| /* URB 39. Command Set SPI Voltage. */ |
| if (dediprog_set_spi_voltage(0x10)) |
| return 1; |
| /* URB 40. Command Set SPI Speed. */ |
| if (dediprog_set_spi_speed(0x2)) |
| return 1; |
| /* URB 41 is just URB 28. */ |
| /* URB 42,44,46,48,51,53 is just URB 8. */ |
| /* URB 43,45,47,49,52,54 is just URB 9. */ |
| /* URB 50 is just URB 6/7. */ |
| /* URB 55-131 is just URB 29-38. (wait unsuccessfully for 4695 (maybe 4751) ms)*/ |
| /* URB 132,134 is just URB 6/7. */ |
| /* URB 133 is just URB 29-38. */ |
| /* URB 135 is just URB 8. */ |
| /* URB 136 is just URB 9. */ |
| /* URB 137 is just URB 11. */ |
| |
| /* Command Start Bulk Read. Data is u16 blockcount, u16 blocksize. */ |
| /* Command Start Bulk Write. Data is u16 blockcount, u16 blocksize. */ |
| /* Bulk transfer sizes for Command Start Bulk Read/Write are always |
| * 512 bytes, rest is filled with 0xff. |
| */ |
| |
| return 0; |
| } |
| #endif |