blob: 7e7e2b188858853f82ea486dfb1a3485d0604ac6 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Paul Fox <pgf@laptop.org>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if CONFIG_FT2232_SPI == 1
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "flash.h"
#include "programmer.h"
#include "spi.h"
#include <ftdi.h>
/* This is not defined in libftdi.h <0.20 (c7e4c09e68cfa6f5e112334aa1b3bb23401c8dc7 to be exact).
* Some tests indicate that his is the only change that it is needed to support the FT232H in flashrom. */
#if !defined(HAVE_FT232H)
#define TYPE_232H 6
#endif
/* Please keep sorted by vendor ID, then device ID. */
#define FTDI_VID 0x0403
#define FTDI_FT2232H_PID 0x6010
#define FTDI_FT4232H_PID 0x6011
#define FTDI_FT232H_PID 0x6014
#define TIAO_TUMPA_PID 0x8a98
#define TIAO_TUMPA_LITE_PID 0x8a99
#define AMONTEC_JTAGKEY_PID 0xCFF8
#define GOEPEL_VID 0x096C
#define GOEPEL_PICOTAP_PID 0x1449
#define FIC_VID 0x1457
#define OPENMOKO_DBGBOARD_PID 0x5118
#define OLIMEX_VID 0x15BA
#define OLIMEX_ARM_OCD_PID 0x0003
#define OLIMEX_ARM_TINY_PID 0x0004
#define OLIMEX_ARM_OCD_H_PID 0x002B
#define OLIMEX_ARM_TINY_H_PID 0x002A
const struct dev_entry devs_ft2232spi[] = {
{FTDI_VID, FTDI_FT2232H_PID, OK, "FTDI", "FT2232H"},
{FTDI_VID, FTDI_FT4232H_PID, OK, "FTDI", "FT4232H"},
{FTDI_VID, FTDI_FT232H_PID, OK, "FTDI", "FT232H"},
{FTDI_VID, TIAO_TUMPA_PID, OK, "TIAO", "USB Multi-Protocol Adapter"},
{FTDI_VID, TIAO_TUMPA_LITE_PID, OK, "TIAO", "USB Multi-Protocol Adapter Lite"},
{FTDI_VID, AMONTEC_JTAGKEY_PID, OK, "Amontec", "JTAGkey"},
{GOEPEL_VID, GOEPEL_PICOTAP_PID, OK, "GOEPEL", "PicoTAP"},
{FIC_VID, OPENMOKO_DBGBOARD_PID, OK, "FIC", "OpenMoko Neo1973 Debug board (V2+)"},
{OLIMEX_VID, OLIMEX_ARM_OCD_PID, NT, "Olimex", "ARM-USB-OCD"},
{OLIMEX_VID, OLIMEX_ARM_TINY_PID, OK, "Olimex", "ARM-USB-TINY"},
{OLIMEX_VID, OLIMEX_ARM_OCD_H_PID, OK, "Olimex", "ARM-USB-OCD-H"},
{OLIMEX_VID, OLIMEX_ARM_TINY_H_PID, OK, "Olimex", "ARM-USB-TINY-H"},
{0},
};
#define DEFAULT_DIVISOR 2
#define BITMODE_BITBANG_NORMAL 1
#define BITMODE_BITBANG_SPI 2
/* Set data bits low-byte command:
* value: 0x08 CS=high, DI=low, DO=low, SK=low
* dir: 0x0b CS=output, DI=input, DO=output, SK=output
*
* JTAGkey(2) needs to enable its output via Bit4 / GPIOL0
* value: 0x18 OE=high, CS=high, DI=low, DO=low, SK=low
* dir: 0x1b OE=output, CS=output, DI=input, DO=output, SK=output
*/
static uint8_t cs_bits = 0x08;
static uint8_t pindir = 0x0b;
static struct ftdi_context ftdic_context;
static const char *get_ft2232_devicename(int ft2232_vid, int ft2232_type)
{
int i;
for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) {
if ((devs_ft2232spi[i].device_id == ft2232_type) && (devs_ft2232spi[i].vendor_id == ft2232_vid))
return devs_ft2232spi[i].device_name;
}
return "unknown device";
}
static const char *get_ft2232_vendorname(int ft2232_vid, int ft2232_type)
{
int i;
for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) {
if ((devs_ft2232spi[i].device_id == ft2232_type) && (devs_ft2232spi[i].vendor_id == ft2232_vid))
return devs_ft2232spi[i].vendor_name;
}
return "unknown vendor";
}
static int send_buf(struct ftdi_context *ftdic, const unsigned char *buf,
int size)
{
int r;
r = ftdi_write_data(ftdic, (unsigned char *) buf, size);
if (r < 0) {
msg_perr("ftdi_write_data: %d, %s\n", r, ftdi_get_error_string(ftdic));
return 1;
}
return 0;
}
static int get_buf(struct ftdi_context *ftdic, const unsigned char *buf,
int size)
{
int r;
while (size > 0) {
r = ftdi_read_data(ftdic, (unsigned char *) buf, size);
if (r < 0) {
msg_perr("ftdi_read_data: %d, %s\n", r, ftdi_get_error_string(ftdic));
return 1;
}
buf += r;
size -= r;
}
return 0;
}
static int ft2232_spi_send_command(struct flashctx *flash,
unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr);
static const struct spi_master spi_master_ft2232 = {
.type = SPI_CONTROLLER_FT2232,
.max_data_read = 64 * 1024,
.max_data_write = 256,
.command = ft2232_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
/* Returns 0 upon success, a negative number upon errors. */
int ft2232_spi_init(void)
{
int ret = 0;
struct ftdi_context *ftdic = &ftdic_context;
unsigned char buf[512];
int ft2232_vid = FTDI_VID;
int ft2232_type = FTDI_FT4232H_PID;
int channel_count = 4; /* Stores the number of channels of the device. */
enum ftdi_interface ft2232_interface = INTERFACE_A;
/*
* The 'H' chips can run with an internal clock of either 12 MHz or 60 MHz,
* but the non-H chips can only run at 12 MHz. We enable the divide-by-5
* prescaler on the former to run on the same speed.
*/
uint8_t clock_5x = 1;
/* In addition to the prescaler mentioned above there is also another
* configurable one on all versions of the chips. Its divisor div can be
* set by a 16 bit value x according to the following formula:
* div = (1 + x) * 2 <-> x = div / 2 - 1
* Hence the expressible divisors are all even numbers between 2 and
* 2^17 (=131072) resulting in SCK frequencies of 6 MHz down to about
* 92 Hz for 12 MHz inputs.
*/
uint32_t divisor = DEFAULT_DIVISOR;
int f;
char *arg;
double mpsse_clk;
arg = extract_programmer_param("type");
if (arg) {
if (!strcasecmp(arg, "2232H")) {
ft2232_type = FTDI_FT2232H_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "4232H")) {
ft2232_type = FTDI_FT4232H_PID;
channel_count = 4;
} else if (!strcasecmp(arg, "232H")) {
ft2232_type = FTDI_FT232H_PID;
channel_count = 1;
} else if (!strcasecmp(arg, "jtagkey")) {
ft2232_type = AMONTEC_JTAGKEY_PID;
channel_count = 2;
cs_bits = 0x18;
pindir = 0x1b;
} else if (!strcasecmp(arg, "picotap")) {
ft2232_vid = GOEPEL_VID;
ft2232_type = GOEPEL_PICOTAP_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "tumpa")) {
/* Interface A is SPI1, B is SPI2. */
ft2232_type = TIAO_TUMPA_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "tumpalite")) {
/* Only one channel is used on lite edition */
ft2232_type = TIAO_TUMPA_LITE_PID;
channel_count = 1;
} else if (!strcasecmp(arg, "busblaster")) {
/* In its default configuration it is a jtagkey clone */
ft2232_type = FTDI_FT2232H_PID;
channel_count = 2;
cs_bits = 0x18;
pindir = 0x1b;
} else if (!strcasecmp(arg, "openmoko")) {
ft2232_vid = FIC_VID;
ft2232_type = OPENMOKO_DBGBOARD_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "arm-usb-ocd")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_OCD_PID;
channel_count = 2;
cs_bits = 0x08;
pindir = 0x1b;
} else if (!strcasecmp(arg, "arm-usb-tiny")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_TINY_PID;
channel_count = 2;
} else if (!strcasecmp(arg, "arm-usb-ocd-h")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_OCD_H_PID;
channel_count = 2;
cs_bits = 0x08;
pindir = 0x1b;
} else if (!strcasecmp(arg, "arm-usb-tiny-h")) {
ft2232_vid = OLIMEX_VID;
ft2232_type = OLIMEX_ARM_TINY_H_PID;
channel_count = 2;
} else {
msg_perr("Error: Invalid device type specified.\n");
free(arg);
return -1;
}
}
free(arg);
arg = extract_programmer_param("port");
if (arg) {
switch (toupper((unsigned char)*arg)) {
case 'A':
ft2232_interface = INTERFACE_A;
break;
case 'B':
ft2232_interface = INTERFACE_B;
if (channel_count < 2)
channel_count = -1;
break;
case 'C':
ft2232_interface = INTERFACE_C;
if (channel_count < 3)
channel_count = -1;
break;
case 'D':
ft2232_interface = INTERFACE_D;
if (channel_count < 4)
channel_count = -1;
break;
default:
channel_count = -1;
break;
}
if (channel_count < 0 || strlen(arg) != 1) {
msg_perr("Error: Invalid channel/port/interface specified: \"%s\".\n", arg);
free(arg);
return -2;
}
}
free(arg);
arg = extract_programmer_param("divisor");
if (arg && strlen(arg)) {
unsigned int temp = 0;
char *endptr;
temp = strtoul(arg, &endptr, 10);
if (*endptr || temp < 2 || temp > 131072 || temp & 0x1) {
msg_perr("Error: Invalid SPI frequency divisor specified: \"%s\".\n"
"Valid are even values between 2 and 131072.\n", arg);
free(arg);
return -2;
} else {
divisor = (uint32_t)temp;
}
}
free(arg);
msg_pdbg("Using device type %s %s ",
get_ft2232_vendorname(ft2232_vid, ft2232_type),
get_ft2232_devicename(ft2232_vid, ft2232_type));
msg_pdbg("channel %s.\n",
(ft2232_interface == INTERFACE_A) ? "A" :
(ft2232_interface == INTERFACE_B) ? "B" :
(ft2232_interface == INTERFACE_C) ? "C" : "D");
if (ftdi_init(ftdic) < 0) {
msg_perr("ftdi_init failed.\n");
return -3;
}
if (ftdi_set_interface(ftdic, ft2232_interface) < 0) {
msg_perr("Unable to select channel (%s).\n", ftdi_get_error_string(ftdic));
}
arg = extract_programmer_param("serial");
f = ftdi_usb_open_desc(ftdic, ft2232_vid, ft2232_type, NULL, arg);
free(arg);
if (f < 0 && f != -5) {
msg_perr("Unable to open FTDI device: %d (%s).\n", f, ftdi_get_error_string(ftdic));
return -4;
}
if (ftdic->type != TYPE_2232H && ftdic->type != TYPE_4232H && ftdic->type != TYPE_232H) {
msg_pdbg("FTDI chip type %d is not high-speed.\n", ftdic->type);
clock_5x = 0;
}
if (ftdi_usb_reset(ftdic) < 0) {
msg_perr("Unable to reset FTDI device (%s).\n", ftdi_get_error_string(ftdic));
}
if (ftdi_set_latency_timer(ftdic, 2) < 0) {
msg_perr("Unable to set latency timer (%s).\n", ftdi_get_error_string(ftdic));
}
if (ftdi_write_data_set_chunksize(ftdic, 256)) {
msg_perr("Unable to set chunk size (%s).\n", ftdi_get_error_string(ftdic));
}
if (ftdi_set_bitmode(ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) {
msg_perr("Unable to set bitmode to SPI (%s).\n", ftdi_get_error_string(ftdic));
}
if (clock_5x) {
msg_pdbg("Disable divide-by-5 front stage\n");
buf[0] = 0x8a; /* Disable divide-by-5. */
if (send_buf(ftdic, buf, 1)) {
ret = -5;
goto ftdi_err;
}
mpsse_clk = 60.0;
} else {
mpsse_clk = 12.0;
}
msg_pdbg("Set clock divisor\n");
buf[0] = 0x86; /* command "set divisor" */
buf[1] = (divisor / 2 - 1) & 0xff;
buf[2] = ((divisor / 2 - 1) >> 8) & 0xff;
if (send_buf(ftdic, buf, 3)) {
ret = -6;
goto ftdi_err;
}
msg_pdbg("MPSSE clock: %f MHz, divisor: %u, SPI clock: %f MHz\n",
mpsse_clk, divisor, (double)(mpsse_clk / divisor));
/* Disconnect TDI/DO to TDO/DI for loopback. */
msg_pdbg("No loopback of TDI/DO TDO/DI\n");
buf[0] = 0x85;
if (send_buf(ftdic, buf, 1)) {
ret = -7;
goto ftdi_err;
}
msg_pdbg("Set data bits\n");
buf[0] = SET_BITS_LOW;
buf[1] = cs_bits;
buf[2] = pindir;
if (send_buf(ftdic, buf, 3)) {
ret = -8;
goto ftdi_err;
}
register_spi_master(&spi_master_ft2232);
return 0;
ftdi_err:
if ((f = ftdi_usb_close(ftdic)) < 0) {
msg_perr("Unable to close FTDI device: %d (%s)\n", f, ftdi_get_error_string(ftdic));
}
return ret;
}
/* Returns 0 upon success, a negative number upon errors. */
static int ft2232_spi_send_command(struct flashctx *flash,
unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
struct ftdi_context *ftdic = &ftdic_context;
static unsigned char *buf = NULL;
/* failed is special. We use bitwise ops, but it is essentially bool. */
int i = 0, ret = 0, failed = 0;
int bufsize;
static int oldbufsize = 0;
if (writecnt > 65536 || readcnt > 65536)
return SPI_INVALID_LENGTH;
/* buf is not used for the response from the chip. */
bufsize = max(writecnt + 9, 260 + 9);
/* Never shrink. realloc() calls are expensive. */
if (bufsize > oldbufsize) {
buf = realloc(buf, bufsize);
if (!buf) {
msg_perr("Out of memory!\n");
/* TODO: What to do with buf? */
return SPI_GENERIC_ERROR;
}
oldbufsize = bufsize;
}
/*
* Minimize USB transfers by packing as many commands as possible
* together. If we're not expecting to read, we can assert CS#, write,
* and deassert CS# all in one shot. If reading, we do three separate
* operations.
*/
msg_pspew("Assert CS#\n");
buf[i++] = SET_BITS_LOW;
buf[i++] = 0 & ~cs_bits; /* assertive */
buf[i++] = pindir;
if (writecnt) {
buf[i++] = 0x11;
buf[i++] = (writecnt - 1) & 0xff;
buf[i++] = ((writecnt - 1) >> 8) & 0xff;
memcpy(buf + i, writearr, writecnt);
i += writecnt;
}
/*
* Optionally terminate this batch of commands with a
* read command, then do the fetch of the results.
*/
if (readcnt) {
buf[i++] = 0x20;
buf[i++] = (readcnt - 1) & 0xff;
buf[i++] = ((readcnt - 1) >> 8) & 0xff;
ret = send_buf(ftdic, buf, i);
failed = ret;
/* We can't abort here, we still have to deassert CS#. */
if (ret)
msg_perr("send_buf failed before read: %i\n", ret);
i = 0;
if (ret == 0) {
/*
* FIXME: This is unreliable. There's no guarantee that
* we read the response directly after sending the read
* command. We may be scheduled out etc.
*/
ret = get_buf(ftdic, readarr, readcnt);
failed |= ret;
/* We can't abort here either. */
if (ret)
msg_perr("get_buf failed: %i\n", ret);
}
}
msg_pspew("De-assert CS#\n");
buf[i++] = SET_BITS_LOW;
buf[i++] = cs_bits;
buf[i++] = pindir;
ret = send_buf(ftdic, buf, i);
failed |= ret;
if (ret)
msg_perr("send_buf failed at end: %i\n", ret);
return failed ? -1 : 0;
}
#endif