blob: c5ace1794ad29e01a073beed47a750af05f15156 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2007, 2008, 2009 Carl-Daniel Hailfinger
* Copyright (C) 2008 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Contains the generic SPI framework
*/
#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "spi.h"
enum spi_controller spi_controller = SPI_CONTROLLER_NONE;
void *spibar = NULL;
void spi_prettyprint_status_register(struct flashchip *flash);
int spi_send_command(unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
switch (spi_controller) {
case SPI_CONTROLLER_IT87XX:
return it8716f_spi_send_command(writecnt, readcnt, writearr,
readarr);
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
return ich_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_SB600:
return sb600_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_WBSIO:
return wbsio_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_FT2232:
return ft2232_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_DUMMY:
return dummy_spi_send_command(writecnt, readcnt, writearr, readarr);
default:
printf_debug
("%s called, but no SPI chipset/strapping detected\n",
__FUNCTION__);
}
return 1;
}
int spi_send_multicommand(struct spi_command *spicommands)
{
int ret = 0;
while ((spicommands->writecnt || spicommands->readcnt) && !ret) {
ret = spi_send_command(spicommands->writecnt, spicommands->readcnt,
spicommands->writearr, spicommands->readarr);
/* This awful hack needs to be replaced with a multicommand
* capable ICH/VIA SPI driver.
*/
if ((ret == SPI_INVALID_OPCODE) &&
((spicommands->writearr[0] == JEDEC_WREN) ||
(spicommands->writearr[0] == JEDEC_EWSR))) {
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
printf_debug(" due to SPI master limitation, ignoring"
" and hoping it will be run as PREOP\n");
ret = 0;
default:
break;
}
}
spicommands++;
}
return ret;
}
static int spi_rdid(unsigned char *readarr, int bytes)
{
const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
int ret;
int i;
ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
if (ret)
return ret;
printf_debug("RDID returned");
for (i = 0; i < bytes; i++)
printf_debug(" 0x%02x", readarr[i]);
printf_debug("\n");
return 0;
}
static int spi_rems(unsigned char *readarr)
{
unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
uint32_t readaddr;
int ret;
ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
if (ret == SPI_INVALID_ADDRESS) {
/* Find the lowest even address allowed for reads. */
readaddr = (spi_get_valid_read_addr() + 1) & ~1;
cmd[1] = (readaddr >> 16) & 0xff,
cmd[2] = (readaddr >> 8) & 0xff,
cmd[3] = (readaddr >> 0) & 0xff,
ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
}
if (ret)
return ret;
printf_debug("REMS returned %02x %02x.\n", readarr[0], readarr[1]);
return 0;
}
static int spi_res(unsigned char *readarr)
{
unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
uint32_t readaddr;
int ret;
ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr);
if (ret == SPI_INVALID_ADDRESS) {
/* Find the lowest even address allowed for reads. */
readaddr = (spi_get_valid_read_addr() + 1) & ~1;
cmd[1] = (readaddr >> 16) & 0xff,
cmd[2] = (readaddr >> 8) & 0xff,
cmd[3] = (readaddr >> 0) & 0xff,
ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr);
}
if (ret)
return ret;
printf_debug("RES returned %02x.\n", readarr[0]);
return 0;
}
int spi_write_enable(void)
{
const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
int result;
/* Send WREN (Write Enable) */
result = spi_send_command(sizeof(cmd), 0, cmd, NULL);
if (result)
printf_debug("%s failed", __func__);
if (result == SPI_INVALID_OPCODE) {
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
printf_debug(" due to SPI master limitation, ignoring"
" and hoping it will be run as PREOP\n");
return 0;
default:
break;
}
}
if (result)
printf_debug("\n");
return result;
}
int spi_write_disable(void)
{
const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
/* Send WRDI (Write Disable) */
return spi_send_command(sizeof(cmd), 0, cmd, NULL);
}
static int probe_spi_rdid_generic(struct flashchip *flash, int bytes)
{
unsigned char readarr[4];
uint32_t id1;
uint32_t id2;
if (spi_rdid(readarr, bytes))
return 0;
if (!oddparity(readarr[0]))
printf_debug("RDID byte 0 parity violation.\n");
/* Check if this is a continuation vendor ID */
if (readarr[0] == 0x7f) {
if (!oddparity(readarr[1]))
printf_debug("RDID byte 1 parity violation.\n");
id1 = (readarr[0] << 8) | readarr[1];
id2 = readarr[2];
if (bytes > 3) {
id2 <<= 8;
id2 |= readarr[3];
}
} else {
id1 = readarr[0];
id2 = (readarr[1] << 8) | readarr[2];
}
printf_debug("%s: id1 0x%02x, id2 0x%02x\n", __FUNCTION__, id1, id2);
if (id1 == flash->manufacture_id && id2 == flash->model_id) {
/* Print the status register to tell the
* user about possible write protection.
*/
spi_prettyprint_status_register(flash);
return 1;
}
/* Test if this is a pure vendor match. */
if (id1 == flash->manufacture_id &&
GENERIC_DEVICE_ID == flash->model_id)
return 1;
return 0;
}
int probe_spi_rdid(struct flashchip *flash)
{
return probe_spi_rdid_generic(flash, 3);
}
/* support 4 bytes flash ID */
int probe_spi_rdid4(struct flashchip *flash)
{
/* only some SPI chipsets support 4 bytes commands */
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
case SPI_CONTROLLER_SB600:
case SPI_CONTROLLER_WBSIO:
case SPI_CONTROLLER_FT2232:
case SPI_CONTROLLER_DUMMY:
return probe_spi_rdid_generic(flash, 4);
default:
printf_debug("4b ID not supported on this SPI controller\n");
}
return 0;
}
int probe_spi_rems(struct flashchip *flash)
{
unsigned char readarr[JEDEC_REMS_INSIZE];
uint32_t id1, id2;
if (spi_rems(readarr))
return 0;
id1 = readarr[0];
id2 = readarr[1];
printf_debug("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2);
if (id1 == flash->manufacture_id && id2 == flash->model_id) {
/* Print the status register to tell the
* user about possible write protection.
*/
spi_prettyprint_status_register(flash);
return 1;
}
/* Test if this is a pure vendor match. */
if (id1 == flash->manufacture_id &&
GENERIC_DEVICE_ID == flash->model_id)
return 1;
return 0;
}
int probe_spi_res(struct flashchip *flash)
{
unsigned char readarr[3];
uint32_t id2;
/* Check if RDID was successful and did not return 0xff 0xff 0xff.
* In that case, RES is pointless.
*/
if (!spi_rdid(readarr, 3) && ((readarr[0] != 0xff) ||
(readarr[1] != 0xff) || (readarr[2] != 0xff)))
return 0;
if (spi_res(readarr))
return 0;
id2 = readarr[0];
printf_debug("%s: id 0x%x\n", __FUNCTION__, id2);
if (id2 != flash->model_id)
return 0;
/* Print the status register to tell the
* user about possible write protection.
*/
spi_prettyprint_status_register(flash);
return 1;
}
uint8_t spi_read_status_register(void)
{
const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
int ret;
/* Read Status Register */
if (spi_controller == SPI_CONTROLLER_SB600) {
/* SB600 uses a different way to read status register. */
return sb600_read_status_register();
} else {
ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr);
if (ret)
printf_debug("RDSR failed!\n");
}
return readarr[0];
}
/* Prettyprint the status register. Common definitions. */
void spi_prettyprint_status_register_common(uint8_t status)
{
printf_debug("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
"%sset\n", (status & (1 << 5)) ? "" : "not ");
printf_debug("Chip status register: Bit 4 / Block Protect 2 (BP2) is "
"%sset\n", (status & (1 << 4)) ? "" : "not ");
printf_debug("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
"%sset\n", (status & (1 << 3)) ? "" : "not ");
printf_debug("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
"%sset\n", (status & (1 << 2)) ? "" : "not ");
printf_debug("Chip status register: Write Enable Latch (WEL) is "
"%sset\n", (status & (1 << 1)) ? "" : "not ");
printf_debug("Chip status register: Write In Progress (WIP/BUSY) is "
"%sset\n", (status & (1 << 0)) ? "" : "not ");
}
/* Prettyprint the status register. Works for
* ST M25P series
* MX MX25L series
*/
void spi_prettyprint_status_register_st_m25p(uint8_t status)
{
printf_debug("Chip status register: Status Register Write Disable "
"(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
printf_debug("Chip status register: Bit 6 is "
"%sset\n", (status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_common(status);
}
void spi_prettyprint_status_register_sst25(uint8_t status)
{
printf_debug("Chip status register: Block Protect Write Disable "
"(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
printf_debug("Chip status register: Auto Address Increment Programming "
"(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_common(status);
}
/* Prettyprint the status register. Works for
* SST 25VF016
*/
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
{
const char *bpt[] = {
"none",
"1F0000H-1FFFFFH",
"1E0000H-1FFFFFH",
"1C0000H-1FFFFFH",
"180000H-1FFFFFH",
"100000H-1FFFFFH",
"all", "all"
};
spi_prettyprint_status_register_sst25(status);
printf_debug("Resulting block protection : %s\n",
bpt[(status & 0x1c) >> 2]);
}
void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
{
const char *bpt[] = {
"none",
"0x70000-0x7ffff",
"0x60000-0x7ffff",
"0x40000-0x7ffff",
"all blocks", "all blocks", "all blocks", "all blocks"
};
spi_prettyprint_status_register_sst25(status);
printf_debug("Resulting block protection : %s\n",
bpt[(status & 0x1c) >> 2]);
}
void spi_prettyprint_status_register(struct flashchip *flash)
{
uint8_t status;
status = spi_read_status_register();
printf_debug("Chip status register is %02x\n", status);
switch (flash->manufacture_id) {
case ST_ID:
if (((flash->model_id & 0xff00) == 0x2000) ||
((flash->model_id & 0xff00) == 0x2500))
spi_prettyprint_status_register_st_m25p(status);
break;
case MX_ID:
if ((flash->model_id & 0xff00) == 0x2000)
spi_prettyprint_status_register_st_m25p(status);
break;
case SST_ID:
switch (flash->model_id) {
case 0x2541:
spi_prettyprint_status_register_sst25vf016(status);
break;
case 0x8d:
case 0x258d:
spi_prettyprint_status_register_sst25vf040b(status);
break;
default:
spi_prettyprint_status_register_sst25(status);
break;
}
break;
}
}
int spi_chip_erase_60(struct flashchip *flash)
{
int result;
struct spi_command spicommands[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = (const unsigned char[]){ JEDEC_WREN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = JEDEC_CE_60_OUTSIZE,
.writearr = (const unsigned char[]){ JEDEC_CE_60 },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
result = spi_disable_blockprotect();
if (result) {
printf_debug("spi_disable_blockprotect failed\n");
return result;
}
result = spi_send_multicommand(spicommands);
if (result) {
printf_debug("%s failed during command execution\n", __func__);
return result;
}
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 1-85 s, so wait in 1 s steps.
*/
/* FIXME: We assume spi_read_status_register will never fail. */
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(1000 * 1000);
if (check_erased_range(flash, 0, flash->total_size * 1024)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_chip_erase_c7(struct flashchip *flash)
{
int result;
struct spi_command spicommands[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = (const unsigned char[]){ JEDEC_WREN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = JEDEC_CE_C7_OUTSIZE,
.writearr = (const unsigned char[]){ JEDEC_CE_C7 },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
result = spi_disable_blockprotect();
if (result) {
printf_debug("spi_disable_blockprotect failed\n");
return result;
}
result = spi_send_multicommand(spicommands);
if (result) {
printf_debug("%s failed during command execution\n", __func__);
return result;
}
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 1-85 s, so wait in 1 s steps.
*/
/* FIXME: We assume spi_read_status_register will never fail. */
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(1000 * 1000);
if (check_erased_range(flash, 0, flash->total_size * 1024)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_chip_erase_60_c7(struct flashchip *flash)
{
int result;
result = spi_chip_erase_60(flash);
if (result) {
printf_debug("spi_chip_erase_60 failed, trying c7\n");
result = spi_chip_erase_c7(flash);
}
return result;
}
int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
unsigned char cmd[JEDEC_BE_52_OUTSIZE] = {JEDEC_BE_52, };
int result;
cmd[1] = (addr & 0x00ff0000) >> 16;
cmd[2] = (addr & 0x0000ff00) >> 8;
cmd[3] = (addr & 0x000000ff);
result = spi_write_enable();
if (result)
return result;
/* Send BE (Block Erase) */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 100-4000 ms, so wait in 100 ms steps.
*/
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(100 * 1000);
if (check_erased_range(flash, addr, blocklen)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
/* Block size is usually
* 64k for Macronix
* 32k for SST
* 4-32k non-uniform for EON
*/
int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
unsigned char cmd[JEDEC_BE_D8_OUTSIZE] = { JEDEC_BE_D8, };
int result;
cmd[1] = (addr & 0x00ff0000) >> 16;
cmd[2] = (addr & 0x0000ff00) >> 8;
cmd[3] = (addr & 0x000000ff);
result = spi_write_enable();
if (result)
return result;
/* Send BE (Block Erase) */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 100-4000 ms, so wait in 100 ms steps.
*/
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(100 * 1000);
if (check_erased_range(flash, addr, blocklen)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_chip_erase_d8(struct flashchip *flash)
{
int i, rc = 0;
int total_size = flash->total_size * 1024;
int erase_size = 64 * 1024;
spi_disable_blockprotect();
printf("Erasing chip: \n");
for (i = 0; i < total_size / erase_size; i++) {
rc = spi_block_erase_d8(flash, i * erase_size, erase_size);
if (rc) {
printf("Error erasing block at 0x%x\n", i);
break;
}
}
printf("\n");
return rc;
}
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
unsigned char cmd[JEDEC_SE_OUTSIZE] = { JEDEC_SE, };
int result;
cmd[1] = (addr & 0x00ff0000) >> 16;
cmd[2] = (addr & 0x0000ff00) >> 8;
cmd[3] = (addr & 0x000000ff);
result = spi_write_enable();
if (result)
return result;
/* Send SE (Sector Erase) */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 15-800 ms, so wait in 10 ms steps.
*/
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(10 * 1000);
if (check_erased_range(flash, addr, blocklen)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
fprintf(stderr, "%s called with incorrect arguments\n", __func__);
return -1;
}
return spi_chip_erase_60(flash);
}
int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
fprintf(stderr, "%s called with incorrect arguments\n", __func__);
return -1;
}
return spi_chip_erase_c7(flash);
}
int spi_write_status_enable(void)
{
const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
int result;
/* Send EWSR (Enable Write Status Register). */
result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);
if (result)
printf_debug("%s failed", __func__);
if (result == SPI_INVALID_OPCODE) {
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
printf_debug(" due to SPI master limitation, ignoring"
" and hoping it will be run as PREOP\n");
return 0;
default:
break;
}
}
if (result)
printf_debug("\n");
return result;
}
/*
* This is according the SST25VF016 datasheet, who knows it is more
* generic that this...
*/
int spi_write_status_register(int status)
{
const unsigned char cmd[JEDEC_WRSR_OUTSIZE] =
{ JEDEC_WRSR, (unsigned char)status };
/* Send WRSR (Write Status Register) */
return spi_send_command(sizeof(cmd), 0, cmd, NULL);
}
void spi_byte_program(int address, uint8_t byte)
{
const unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE] = {
JEDEC_BYTE_PROGRAM,
(address >> 16) & 0xff,
(address >> 8) & 0xff,
(address >> 0) & 0xff,
byte
};
/* Send Byte-Program */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
}
int spi_nbyte_program(int address, uint8_t *bytes, int len)
{
unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
JEDEC_BYTE_PROGRAM,
(address >> 16) & 0xff,
(address >> 8) & 0xff,
(address >> 0) & 0xff,
};
if (len > 256) {
printf_debug ("%s called for too long a write\n",
__FUNCTION__);
return 1;
}
memcpy(&cmd[4], bytes, len);
/* Send Byte-Program */
return spi_send_command(4 + len, 0, cmd, NULL);
}
int spi_disable_blockprotect(void)
{
uint8_t status;
int result;
status = spi_read_status_register();
/* If there is block protection in effect, unprotect it first. */
if ((status & 0x3c) != 0) {
printf_debug("Some block protection in effect, disabling\n");
result = spi_write_status_enable();
if (result) {
printf_debug("spi_write_status_enable failed\n");
return result;
}
result = spi_write_status_register(status & ~0x3c);
if (result) {
printf_debug("spi_write_status_register failed\n");
return result;
}
}
return 0;
}
int spi_nbyte_read(int address, uint8_t *bytes, int len)
{
const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
JEDEC_READ,
(address >> 16) & 0xff,
(address >> 8) & 0xff,
(address >> 0) & 0xff,
};
/* Send Read */
return spi_send_command(sizeof(cmd), len, cmd, bytes);
}
/*
* Read a complete flash chip.
* Each page is read separately in chunks with a maximum size of chunksize.
*/
int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
{
int rc = 0;
int i, j, starthere, lenhere;
int page_size = flash->page_size;
int toread;
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each page with at least one affected
* byte. The lowest page number is (start / page_size) since that
* division rounds down. The highest page number we want is the page
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest page number is
* (start + len - 1) / page_size. Since we want to include that last
* page as well, the loop condition uses <=.
*/
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
/* Byte position of the first byte in the range in this page. */
/* starthere is an offset to the base address of the chip. */
starthere = max(start, i * page_size);
/* Length of bytes in the range in this page. */
lenhere = min(start + len, (i + 1) * page_size) - starthere;
for (j = 0; j < lenhere; j += chunksize) {
toread = min(chunksize, lenhere - j);
rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread);
if (rc)
break;
}
if (rc)
break;
}
return rc;
}
int spi_chip_read(struct flashchip *flash, uint8_t *buf, int start, int len)
{
switch (spi_controller) {
case SPI_CONTROLLER_IT87XX:
return it8716f_spi_chip_read(flash, buf, start, len);
case SPI_CONTROLLER_SB600:
return sb600_spi_read(flash, buf, start, len);
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
return ich_spi_read(flash, buf, start, len);
case SPI_CONTROLLER_WBSIO:
return wbsio_spi_read(flash, buf, start, len);
case SPI_CONTROLLER_FT2232:
return ft2232_spi_read(flash, buf, start, len);
default:
printf_debug
("%s called, but no SPI chipset/strapping detected\n",
__FUNCTION__);
}
return 1;
}
/*
* Program chip using byte programming. (SLOW!)
* This is for chips which can only handle one byte writes
* and for chips where memory mapped programming is impossible
* (e.g. due to size constraints in IT87* for over 512 kB)
*/
int spi_chip_write_1(struct flashchip *flash, uint8_t *buf)
{
int total_size = 1024 * flash->total_size;
int i;
spi_disable_blockprotect();
for (i = 0; i < total_size; i++) {
spi_write_enable();
spi_byte_program(i, buf[i]);
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(10);
}
return 0;
}
/*
* Program chip using page (256 bytes) programming.
* Some SPI masters can't do this, they use single byte programming instead.
*/
int spi_chip_write_256(struct flashchip *flash, uint8_t *buf)
{
switch (spi_controller) {
case SPI_CONTROLLER_IT87XX:
return it8716f_spi_chip_write_256(flash, buf);
case SPI_CONTROLLER_SB600:
return sb600_spi_write_1(flash, buf);
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
return ich_spi_write_256(flash, buf);
case SPI_CONTROLLER_WBSIO:
return wbsio_spi_write_1(flash, buf);
case SPI_CONTROLLER_FT2232:
return ft2232_spi_write_256(flash, buf);
default:
printf_debug
("%s called, but no SPI chipset/strapping detected\n",
__FUNCTION__);
}
return 1;
}
uint32_t spi_get_valid_read_addr(void)
{
/* Need to return BBAR for ICH chipsets. */
return 0;
}
int spi_aai_write(struct flashchip *flash, uint8_t *buf)
{
uint32_t pos = 2, size = flash->total_size * 1024;
unsigned char w[6] = {0xad, 0, 0, 0, buf[0], buf[1]};
int result;
switch (spi_controller) {
case SPI_CONTROLLER_WBSIO:
fprintf(stderr, "%s: impossible with Winbond SPI masters,"
" degrading to byte program\n", __func__);
return spi_chip_write_1(flash, buf);
default:
break;
}
if (flash->erase(flash)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
result = spi_write_enable();
if (result)
return result;
spi_send_command(6, 0, w, NULL);
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(5); /* SST25VF040B Tbp is max 10us */
while (pos < size) {
w[1] = buf[pos++];
w[2] = buf[pos++];
spi_send_command(3, 0, w, NULL);
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(5); /* SST25VF040B Tbp is max 10us */
}
spi_write_disable();
return 0;
}