blob: 4e01fcb205f5e0c1c3c9c4556ff6296c84bfee7a [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2013 Ricardo Ribalda - Qtechnology A/S
* Copyright (C) 2011, 2014 Stefan Tauner
*
* Based on nicinctel_spi.c and ichspi.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Datasheet: Intel 82580 Quad/Dual Gigabit Ethernet LAN Controller Datasheet
* 3.3.1.4: General EEPROM Software Access
* 4.7: Access to shared resources (FIXME: we should probably use this semaphore interface)
* 7.4: Register Descriptions
*/
/*
* Datasheet: Intel Ethernet Controller I210: Datasheet
* 8.4.3: EEPROM-Mode Read Register
* 8.4.6: EEPROM-Mode Write Register
* Write process inspired on kernel e1000_i210.c
*/
#include <stdlib.h>
#include <unistd.h>
#include "flash.h"
#include "spi.h"
#include "programmer.h"
#include "hwaccess.h"
#define PCI_VENDOR_ID_INTEL 0x8086
#define MEMMAP_SIZE 0x1c /* Only EEC, EERD and EEWR are needed. */
#define EEC 0x10 /* EEPROM/Flash Control Register */
#define EERD 0x14 /* EEPROM Read Register */
#define EEWR 0x18 /* EEPROM Write Register */
/* EPROM/Flash Control Register bits */
#define EE_SCK 0
#define EE_CS 1
#define EE_SI 2
#define EE_SO 3
#define EE_REQ 6
#define EE_GNT 7
#define EE_PRES 8
#define EE_SIZE 11
#define EE_SIZE_MASK 0xf
#define EE_FLUPD 23
#define EE_FLUDONE 26
/* EEPROM Read Register bits */
#define EERD_START 0
#define EERD_DONE 1
#define EERD_ADDR 2
#define EERD_DATA 16
/* EEPROM Write Register bits */
#define EEWR_CMDV 0
#define EEWR_DONE 1
#define EEWR_ADDR 2
#define EEWR_DATA 16
#define BIT(x) (1<<x)
#define EE_PAGE_MASK 0x3f
static uint8_t *nicintel_eebar;
static struct pci_dev *nicintel_pci;
static bool done_i20_write = false;
#define UNPROG_DEVICE 0x1509
/*
* Warning: is_i210() below makes assumptions on these PCI ids.
* It may have to be updated when this list is extended.
*/
const struct dev_entry nics_intel_ee[] = {
{PCI_VENDOR_ID_INTEL, 0x150e, OK, "Intel", "82580 Quad Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, 0x150f, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Fiber)"},
{PCI_VENDOR_ID_INTEL, 0x1510, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Backplane)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Ext. PHY)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Dual Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, UNPROG_DEVICE, OK, "Intel", "Unprogrammed 82580 Quad/Dual Gigabit Ethernet Controller"},
{PCI_VENDOR_ID_INTEL, 0x1531, NT, "Intel", "I210 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1532, NT, "Intel", "I211 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1533, OK, "Intel", "I210 Gigabit Network Connection"},
{PCI_VENDOR_ID_INTEL, 0x1536, NT, "Intel", "I210 Gigabit Network Connection SERDES Fiber"},
{PCI_VENDOR_ID_INTEL, 0x1537, NT, "Intel", "I210 Gigabit Network Connection SERDES Backplane"},
{PCI_VENDOR_ID_INTEL, 0x1538, NT, "Intel", "I210 Gigabit Network Connection SGMII"},
{PCI_VENDOR_ID_INTEL, 0x1539, NT, "Intel", "I211 Gigabit Network Connection"},
{0},
};
static inline bool is_i210(uint16_t device_id)
{
return (device_id & 0xfff0) == 0x1530;
}
static int nicintel_ee_probe_i210(struct flashctx *flash)
{
/* Emulated eeprom has a fixed size of 4 KB */
flash->chip->total_size = 4;
flash->chip->page_size = flash->chip->total_size * 1024;
flash->chip->tested = TEST_OK_PREW;
flash->chip->gran = write_gran_1byte_implicit_erase;
flash->chip->block_erasers->eraseblocks[0].size = flash->chip->page_size;
flash->chip->block_erasers->eraseblocks[0].count = 1;
return 1;
}
static int nicintel_ee_probe_82580(struct flashctx *flash)
{
if (nicintel_pci->device_id == UNPROG_DEVICE)
flash->chip->total_size = 16; /* Fall back to minimum supported size. */
else {
uint32_t tmp = pci_mmio_readl(nicintel_eebar + EEC);
tmp = ((tmp >> EE_SIZE) & EE_SIZE_MASK);
switch (tmp) {
case 7:
flash->chip->total_size = 16;
break;
case 8:
flash->chip->total_size = 32;
break;
default:
msg_cerr("Unsupported chip size 0x%x\n", tmp);
return 0;
}
}
flash->chip->page_size = EE_PAGE_MASK + 1;
flash->chip->tested = TEST_OK_PREW;
flash->chip->gran = write_gran_1byte_implicit_erase;
flash->chip->block_erasers->eraseblocks[0].size = (EE_PAGE_MASK + 1);
flash->chip->block_erasers->eraseblocks[0].count = (flash->chip->total_size * 1024) / (EE_PAGE_MASK + 1);
return 1;
}
static int nicintel_ee_probe(struct flashctx *flash)
{
if (is_i210(nicintel_pci->device_id))
return nicintel_ee_probe_i210(flash);
return nicintel_ee_probe_82580(flash);
}
#define MAX_ATTEMPTS 10000000
static int nicintel_ee_read_word(unsigned int addr, uint16_t *data)
{
uint32_t tmp = BIT(EERD_START) | (addr << EERD_ADDR);
pci_mmio_writel(tmp, nicintel_eebar + EERD);
/* Poll done flag. 10.000.000 cycles seem to be enough. */
uint32_t i;
for (i = 0; i < MAX_ATTEMPTS; i++) {
tmp = pci_mmio_readl(nicintel_eebar + EERD);
if (tmp & BIT(EERD_DONE)) {
*data = (tmp >> EERD_DATA) & 0xffff;
return 0;
}
}
return -1;
}
static int nicintel_ee_read(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
uint16_t data;
/* The NIC interface always reads 16 b words so we need to convert the address and handle odd address
* explicitly at the start (and also at the end in the loop below). */
if (addr & 1) {
if (nicintel_ee_read_word(addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
}
while (len > 0) {
if (nicintel_ee_read_word(addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
if (len > 0) {
*buf++ = (data >> 8) & 0xff;
addr++;
len--;
}
}
return 0;
}
static int nicintel_ee_write_word_i210(unsigned int addr, uint16_t data)
{
uint32_t eewr;
eewr = addr << EEWR_ADDR;
eewr |= data << EEWR_DATA;
eewr |= BIT(EEWR_CMDV);
pci_mmio_writel(eewr, nicintel_eebar + EEWR);
programmer_delay(5);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(nicintel_eebar + EEWR) & BIT(EEWR_DONE))
return 0;
return -1;
}
static int nicintel_ee_write_i210(struct flashctx *flash, const uint8_t *buf,
unsigned int addr, unsigned int len)
{
done_i20_write = true;
if (addr & 1) {
uint16_t data;
if (nicintel_ee_read_word(addr / 2, &data)) {
msg_perr("Timeout reading heading byte\n");
return -1;
}
data &= 0xff;
data |= (buf ? (buf[0]) : 0xff) << 8;
if (nicintel_ee_write_word_i210(addr / 2, data)) {
msg_perr("Timeout writing heading word\n");
return -1;
}
if (buf)
buf ++;
addr ++;
len --;
}
while (len > 0) {
uint16_t data;
if (len == 1) {
if (nicintel_ee_read_word(addr / 2, &data)) {
msg_perr("Timeout reading tail byte\n");
return -1;
}
data &= 0xff00;
data |= buf ? (buf[0]) : 0xff;
} else {
if (buf)
data = buf[0] | (buf[1] << 8);
else
data = 0xffff;
}
if (nicintel_ee_write_word_i210(addr / 2, data)) {
msg_perr("Timeout writing Shadow RAM\n");
return -1;
}
if (buf)
buf += 2;
if (len > 2)
len -= 2;
else
len = 0;
addr += 2;
}
return 0;
}
static int nicintel_ee_bitset(int reg, int bit, bool val)
{
uint32_t tmp;
tmp = pci_mmio_readl(nicintel_eebar + reg);
if (val)
tmp |= BIT(bit);
else
tmp &= ~BIT(bit);
pci_mmio_writel(tmp, nicintel_eebar + reg);
return -1;
}
/* Shifts one byte out while receiving another one by bitbanging (denoted "direct access" in the datasheet). */
static int nicintel_ee_bitbang(uint8_t mosi, uint8_t *miso)
{
uint8_t out = 0x0;
int i;
for (i = 7; i >= 0; i--) {
nicintel_ee_bitset(EEC, EE_SI, mosi & BIT(i));
nicintel_ee_bitset(EEC, EE_SCK, 1);
if (miso != NULL) {
uint32_t tmp = pci_mmio_readl(nicintel_eebar + EEC);
if (tmp & BIT(EE_SO))
out |= BIT(i);
}
nicintel_ee_bitset(EEC, EE_SCK, 0);
}
if (miso != NULL)
*miso = out;
return 0;
}
/* Polls the WIP bit of the status register of the attached EEPROM via bitbanging. */
static int nicintel_ee_ready(void)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
nicintel_ee_bitset(EEC, EE_CS, 0);
nicintel_ee_bitbang(JEDEC_RDSR, NULL);
uint8_t rdsr;
nicintel_ee_bitbang(0x00, &rdsr);
nicintel_ee_bitset(EEC, EE_CS, 1);
programmer_delay(1);
if (!(rdsr & SPI_SR_WIP)) {
return 0;
}
}
return -1;
}
/* Requests direct access to the SPI pins. */
static int nicintel_ee_req(void)
{
uint32_t tmp;
nicintel_ee_bitset(EEC, EE_REQ, 1);
tmp = pci_mmio_readl(nicintel_eebar + EEC);
if (!(tmp & BIT(EE_GNT))) {
msg_perr("Enabling eeprom access failed.\n");
return 1;
}
nicintel_ee_bitset(EEC, EE_SCK, 0);
return 0;
}
static int nicintel_ee_write_82580(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
{
if (nicintel_ee_req())
return -1;
int ret = -1;
if (nicintel_ee_ready())
goto out;
while (len > 0) {
/* WREN */
nicintel_ee_bitset(EEC, EE_CS, 0);
nicintel_ee_bitbang(JEDEC_WREN, NULL);
nicintel_ee_bitset(EEC, EE_CS, 1);
programmer_delay(1);
/* data */
nicintel_ee_bitset(EEC, EE_CS, 0);
nicintel_ee_bitbang(JEDEC_BYTE_PROGRAM, NULL);
nicintel_ee_bitbang((addr >> 8) & 0xff, NULL);
nicintel_ee_bitbang(addr & 0xff, NULL);
while (len > 0) {
nicintel_ee_bitbang((buf) ? *buf++ : 0xff, NULL);
len--;
addr++;
if (!(addr & EE_PAGE_MASK))
break;
}
nicintel_ee_bitset(EEC, EE_CS, 1);
programmer_delay(1);
if (nicintel_ee_ready())
goto out;
}
ret = 0;
out:
nicintel_ee_bitset(EEC, EE_REQ, 0); /* Give up direct access. */
return ret;
}
static int nicintel_ee_write(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
{
if (is_i210(nicintel_pci->device_id))
return nicintel_ee_write_i210(flash, buf, addr, len);
return nicintel_ee_write_82580(flash, buf, addr, len);
}
static int nicintel_ee_erase(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write(flash, NULL, addr, len);
}
static const struct opaque_master opaque_master_nicintel_ee = {
.probe = nicintel_ee_probe,
.read = nicintel_ee_read,
.write = nicintel_ee_write,
.erase = nicintel_ee_erase,
};
static int nicintel_ee_shutdown_i210(void *arg)
{
if (!done_i20_write)
return 0;
uint32_t flup = pci_mmio_readl(nicintel_eebar + EEC);
flup |= BIT(EE_FLUPD);
pci_mmio_writel(flup, nicintel_eebar + EEC);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(nicintel_eebar + EEC) & BIT(EE_FLUDONE))
return 0;
msg_perr("Flash update failed\n");
return -1;
}
static int nicintel_ee_shutdown(void *eecp)
{
uint32_t old_eec = *(uint32_t *)eecp;
/* Request bitbanging and unselect the chip first to be safe. */
if (nicintel_ee_req() || nicintel_ee_bitset(EEC, EE_CS, 1))
return -1;
/* Try to restore individual bits we care about. */
int ret = nicintel_ee_bitset(EEC, EE_SCK, old_eec & BIT(EE_SCK));
ret |= nicintel_ee_bitset(EEC, EE_SI, old_eec & BIT(EE_SI));
ret |= nicintel_ee_bitset(EEC, EE_CS, old_eec & BIT(EE_CS));
/* REQ will be cleared by hardware anyway after 2 seconds of inactivity on the SPI pins (3.3.2.1). */
ret |= nicintel_ee_bitset(EEC, EE_REQ, old_eec & BIT(EE_REQ));
free(eecp);
return ret;
}
int nicintel_ee_init(void)
{
if (rget_io_perms())
return 1;
struct pci_dev *dev = pcidev_init(nics_intel_ee, PCI_BASE_ADDRESS_0);
if (!dev)
return 1;
uint32_t io_base_addr = pcidev_readbar(dev, PCI_BASE_ADDRESS_0);
if (!io_base_addr)
return 1;
nicintel_eebar = rphysmap("Intel Gigabit NIC w/ SPI EEPROM",
io_base_addr + (is_i210(dev->device_id) ? 0x12000 : 0), MEMMAP_SIZE);
if (!nicintel_eebar)
return 1;
nicintel_pci = dev;
if ((dev->device_id != UNPROG_DEVICE) && ! is_i210(dev->device_id))
{
uint32_t eec = pci_mmio_readl(nicintel_eebar + EEC);
/* C.f. 3.3.1.5 for the detection mechanism (maybe? contradicting the EE_PRES definition),
* and 3.3.1.7 for possible recovery. */
if (!(eec & BIT(EE_PRES))) {
msg_perr("Controller reports no EEPROM is present.\n");
return 1;
}
uint32_t *eecp = malloc(sizeof(uint32_t));
if (eecp == NULL)
return 1;
*eecp = eec;
if (register_shutdown(nicintel_ee_shutdown, eecp))
return 1;
}
if (is_i210(dev->device_id))
if (register_shutdown(nicintel_ee_shutdown_i210, NULL))
return 1;
return register_opaque_master(&opaque_master_nicintel_ee);
}