blob: 996d2d7d9c2385a97ada0ce4a2588f4621a74dc3 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2010 Carl-Daniel Hailfinger
* Copyright (C) 2015 Simon Glass
* Copyright (C) 2015 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "platform.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#if IS_WINDOWS
#include <lusb0_usb.h>
#else
#include <usb.h>
#endif
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
#define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z)
#define DEFAULT_TIMEOUT 3000
#define REQTYPE_OTHER_OUT (USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER) /* 0x43 */
#define REQTYPE_OTHER_IN (USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER) /* 0xC3 */
#define REQTYPE_EP_OUT (USB_ENDPOINT_OUT | USB_TYPE_VENDOR | USB_RECIP_ENDPOINT) /* 0x42 */
#define REQTYPE_EP_IN (USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_ENDPOINT) /* 0xC2 */
static usb_dev_handle *dediprog_handle;
static int dediprog_endpoint;
enum dediprog_leds {
LED_INVALID = -1,
LED_NONE = 0,
LED_PASS = 1 << 0,
LED_BUSY = 1 << 1,
LED_ERROR = 1 << 2,
LED_ALL = 7,
};
/* IO bits for CMD_SET_IO_LED message */
enum dediprog_ios {
IO1 = 1 << 0,
IO2 = 1 << 1,
IO3 = 1 << 2,
IO4 = 1 << 3,
};
enum dediprog_cmds {
CMD_TRANSCEIVE = 0x01,
CMD_POLL_STATUS_REG = 0x02,
CMD_SET_VPP = 0x03,
CMD_SET_TARGET = 0x04,
CMD_READ_EEPROM = 0x05,
CMD_WRITE_EEPROM = 0x06,
CMD_SET_IO_LED = 0x07,
CMD_READ_PROG_INFO = 0x08,
CMD_SET_VCC = 0x09,
CMD_SET_STANDALONE = 0x0A,
CMD_GET_BUTTON = 0x11,
CMD_GET_UID = 0x12,
CMD_SET_CS = 0x14,
CMD_IO_MODE = 0x15,
CMD_FW_UPDATE = 0x1A,
CMD_FPGA_UPDATE = 0x1B,
CMD_READ_FPGA_VERSION = 0x1C,
CMD_SET_HOLD = 0x1D,
CMD_READ = 0x20,
CMD_WRITE = 0x30,
CMD_WRITE_AT45DB = 0x31,
CMD_NAND_WRITE = 0x32,
CMD_NAND_READ = 0x33,
CMD_SET_SPI_CLK = 0x61,
CMD_CHECK_SOCKET = 0x62,
CMD_DOWNLOAD_PRJ = 0x63,
CMD_READ_PRJ_NAME = 0x64,
// New protocol/firmware only
CMD_CHECK_SDCARD = 0x65,
CMD_READ_PRJ = 0x66,
};
enum dediprog_target {
FLASH_TYPE_APPLICATION_FLASH_1 = 0,
FLASH_TYPE_FLASH_CARD,
FLASH_TYPE_APPLICATION_FLASH_2,
FLASH_TYPE_SOCKET,
};
enum dediprog_readmode {
READ_MODE_STD = 1,
READ_MODE_FAST = 2,
READ_MODE_ATMEL45 = 3,
READ_MODE_4B_ADDR_FAST = 4,
READ_MODE_4B_ADDR_FAST_0x0C = 5, /* New protocol only */
};
enum dediprog_writemode {
WRITE_MODE_PAGE_PGM = 1,
WRITE_MODE_PAGE_WRITE = 2,
WRITE_MODE_1B_AAI = 3,
WRITE_MODE_2B_AAI = 4,
WRITE_MODE_128B_PAGE = 5,
WRITE_MODE_PAGE_AT26DF041 = 6,
WRITE_MODE_SILICON_BLUE_FPGA = 7,
WRITE_MODE_64B_PAGE_NUMONYX_PCM = 8, /* unit of length 512 bytes */
WRITE_MODE_4B_ADDR_256B_PAGE_PGM = 9,
WRITE_MODE_32B_PAGE_PGM_MXIC_512K = 10, /* unit of length 512 bytes */
WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12 = 11,
WRITE_MODE_4B_ADDR_256B_PAGE_PGM_FLAGS = 12,
};
static int dediprog_firmwareversion = FIRMWARE_VERSION(0, 0, 0);
#if 0
/* Might be useful for other pieces of code as well. */
static void print_hex(void *buf, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
msg_pdbg(" %02x", ((uint8_t *)buf)[i]);
}
#endif
/* Might be useful for other USB devices as well. static for now. */
/* device parameter allows user to specify one device of multiple installed */
static struct usb_device *get_device_by_vid_pid(uint16_t vid, uint16_t pid, unsigned int device)
{
struct usb_bus *bus;
struct usb_device *dev;
for (bus = usb_get_busses(); bus; bus = bus->next)
for (dev = bus->devices; dev; dev = dev->next)
if ((dev->descriptor.idVendor == vid) &&
(dev->descriptor.idProduct == pid)) {
if (device == 0)
return dev;
device--;
}
return NULL;
}
/* This function sets the GPIOs connected to the LEDs as well as IO1-IO4. */
static int dediprog_set_leds(int leds)
{
if (leds < LED_NONE || leds > LED_ALL)
leds = LED_ALL;
/* Older Dediprogs with 2.x.x and 3.x.x firmware only had
* two LEDs, and they were reversed. So map them around if
* we have an old device. On those devices the LEDs map as
* follows:
* bit 2 == 0: green light is on.
* bit 0 == 0: red light is on.
*/
int target_leds;
if (dediprog_firmwareversion < FIRMWARE_VERSION(5,0,0)) {
target_leds = ((leds & LED_ERROR) >> 2) |
((leds & LED_PASS) << 2);
} else {
target_leds = leds;
}
target_leds ^= 7;
int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_SET_IO_LED, 0x09, target_leds,
NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command Set LED 0x%x failed (%s)!\n", leds, usb_strerror());
return 1;
}
return 0;
}
static int dediprog_set_spi_voltage(int millivolt)
{
int ret;
uint16_t voltage_selector;
switch (millivolt) {
case 0:
/* Admittedly this one is an assumption. */
voltage_selector = 0x0;
break;
case 1800:
voltage_selector = 0x12;
break;
case 2500:
voltage_selector = 0x11;
break;
case 3500:
voltage_selector = 0x10;
break;
default:
msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt);
return 1;
}
msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000,
millivolt % 1000);
if (voltage_selector == 0) {
/* Wait some time as the original driver does. */
programmer_delay(200 * 1000);
}
ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_SET_VCC, voltage_selector, 0,
NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command Set SPI Voltage 0x%x failed!\n",
voltage_selector);
return 1;
}
if (voltage_selector != 0) {
/* Wait some time as the original driver does. */
programmer_delay(200 * 1000);
}
return 0;
}
struct dediprog_spispeeds {
const char *const name;
const int speed;
};
static const struct dediprog_spispeeds spispeeds[] = {
{ "24M", 0x0 },
{ "12M", 0x2 },
{ "8M", 0x1 },
{ "3M", 0x3 },
{ "2.18M", 0x4 },
{ "1.5M", 0x5 },
{ "750k", 0x6 },
{ "375k", 0x7 },
{ NULL, 0x0 },
};
static int dediprog_set_spi_speed(unsigned int spispeed_idx)
{
if (dediprog_firmwareversion < FIRMWARE_VERSION(5, 0, 0)) {
msg_pwarn("Skipping to set SPI speed because firmware is too old.\n");
return 0;
}
const struct dediprog_spispeeds *spispeed = &spispeeds[spispeed_idx];
msg_pdbg("SPI speed is %sHz\n", spispeed->name);
int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_SET_SPI_CLK, spispeed->speed, 0xff,
NULL, 0x0, DEFAULT_TIMEOUT);
if (ret != 0x0) {
msg_perr("Command Set SPI Speed 0x%x failed!\n", spispeed->speed);
return 1;
}
return 0;
}
/* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes.
* @start start address
* @len length
* @return 0 on success, 1 on failure
*/
static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len)
{
int ret;
unsigned int i;
/* chunksize must be 512, other sizes will NOT work at all. */
const unsigned int chunksize = 0x200;
const unsigned int count = len / chunksize;
const char count_and_chunk[] = {count & 0xff,
(count >> 8) & 0xff,
chunksize & 0xff,
(chunksize >> 8) & 0xff};
if ((start % chunksize) || (len % chunksize)) {
msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
"at flashrom@flashrom.org\n", __func__, start, len);
return 1;
}
/* No idea if the hardware can handle empty reads, so chicken out. */
if (!len)
return 0;
/* Command Read SPI Bulk. No idea which read command is used on the
* SPI side.
*/
ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_READ, start % 0x10000,
start / 0x10000, (char *)count_and_chunk,
sizeof(count_and_chunk), DEFAULT_TIMEOUT);
if (ret != sizeof(count_and_chunk)) {
msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret,
usb_strerror());
return 1;
}
for (i = 0; i < count; i++) {
ret = usb_bulk_read(dediprog_handle, 0x80 | dediprog_endpoint,
(char *)buf + i * chunksize, chunksize,
DEFAULT_TIMEOUT);
if (ret != chunksize) {
msg_perr("SPI bulk read %i failed, expected %i, got %i "
"%s!\n", i, chunksize, ret, usb_strerror());
return 1;
}
}
return 0;
}
static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len)
{
int ret;
/* chunksize must be 512, other sizes will NOT work at all. */
const unsigned int chunksize = 0x200;
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
unsigned int bulklen;
dediprog_set_leds(LED_BUSY);
if (residue) {
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
start, residue);
ret = spi_read_chunked(flash, buf, start, residue, 16);
if (ret)
goto err;
}
/* Round down. */
bulklen = (len - residue) / chunksize * chunksize;
ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue,
bulklen);
if (ret)
goto err;
len -= residue + bulklen;
if (len) {
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
start, len);
ret = spi_read_chunked(flash, buf + residue + bulklen,
start + residue + bulklen, len, 16);
if (ret)
goto err;
}
dediprog_set_leds(LED_PASS);
return 0;
err:
dediprog_set_leds(LED_ERROR);
return ret;
}
/* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes.
* @chunksize length of data chunks, only 256 supported by now
* @start start address
* @len length
* @dedi_spi_cmd dediprog specific write command for spi bus
* @return 0 on success, 1 on failure
*/
static int dediprog_spi_bulk_write(struct flashctx *flash, const uint8_t *buf, unsigned int chunksize,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
int ret;
unsigned int i;
/* USB transfer size must be 512, other sizes will NOT work at all.
* chunksize is the real data size per USB bulk transfer. The remaining
* space in a USB bulk transfer must be filled with 0xff padding.
*/
const unsigned int count = len / chunksize;
const char count_and_cmd[] = {count & 0xff, (count >> 8) & 0xff, 0x00, dedi_spi_cmd};
char usbbuf[512];
/*
* We should change this check to
* chunksize > 512
* once we know how to handle different chunk sizes.
*/
if (chunksize != 256) {
msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n"
"Please report a bug at flashrom@flashrom.org\n", __func__, chunksize);
return 1;
}
if ((start % chunksize) || (len % chunksize)) {
msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
"at flashrom@flashrom.org\n", __func__, start, len);
return 1;
}
/* No idea if the hardware can handle empty writes, so chicken out. */
if (!len)
return 0;
/* Command Write SPI Bulk. No idea which write command is used on the
* SPI side.
*/
ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_WRITE, start % 0x10000, start / 0x10000,
(char *)count_and_cmd, sizeof(count_and_cmd), DEFAULT_TIMEOUT);
if (ret != sizeof(count_and_cmd)) {
msg_perr("Command Write SPI Bulk failed, %i %s!\n", ret,
usb_strerror());
return 1;
}
for (i = 0; i < count; i++) {
memset(usbbuf, 0xff, sizeof(usbbuf));
memcpy(usbbuf, buf + i * chunksize, chunksize);
ret = usb_bulk_write(dediprog_handle, dediprog_endpoint,
usbbuf, 512,
DEFAULT_TIMEOUT);
if (ret != 512) {
msg_perr("SPI bulk write failed, expected %i, got %i "
"%s!\n", 512, ret, usb_strerror());
return 1;
}
}
return 0;
}
static int dediprog_spi_write(struct flashctx *flash, const uint8_t *buf,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
int ret;
const unsigned int chunksize = flash->chip->page_size;
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
unsigned int bulklen;
dediprog_set_leds(LED_BUSY);
if (chunksize != 256) {
msg_pdbg("Page sizes other than 256 bytes are unsupported as "
"we don't know how dediprog\nhandles them.\n");
/* Write everything like it was residue. */
residue = len;
}
if (residue) {
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
start, residue);
/* No idea about the real limit. Maybe 12, maybe more. */
ret = spi_write_chunked(flash, buf, start, residue, 12);
if (ret) {
dediprog_set_leds(LED_ERROR);
return ret;
}
}
/* Round down. */
bulklen = (len - residue) / chunksize * chunksize;
ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd);
if (ret) {
dediprog_set_leds(LED_ERROR);
return ret;
}
len -= residue + bulklen;
if (len) {
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
start, len);
ret = spi_write_chunked(flash, buf + residue + bulklen,
start + residue + bulklen, len, 12);
if (ret) {
dediprog_set_leds(LED_ERROR);
return ret;
}
}
dediprog_set_leds(LED_PASS);
return 0;
}
static int dediprog_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_PAGE_PGM);
}
static int dediprog_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_2B_AAI);
}
static int dediprog_spi_send_command(struct flashctx *flash,
unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
int ret;
msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt);
if (writecnt > UINT16_MAX) {
msg_perr("Invalid writecnt=%i, aborting.\n", writecnt);
return 1;
}
if (readcnt > UINT16_MAX) {
msg_perr("Invalid readcnt=%i, aborting.\n", readcnt);
return 1;
}
ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_TRANSCEIVE, 0, readcnt ? 0x1 : 0x0,
(char *)writearr, writecnt, DEFAULT_TIMEOUT);
if (ret != writecnt) {
msg_perr("Send SPI failed, expected %i, got %i %s!\n",
writecnt, ret, usb_strerror());
return 1;
}
if (readcnt == 0)
return 0;
ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_TRANSCEIVE, 0, 0,
(char *)readarr, readcnt, DEFAULT_TIMEOUT);
if (ret != readcnt) {
msg_perr("Receive SPI failed, expected %i, got %i %s!\n",
readcnt, ret, usb_strerror());
return 1;
}
return 0;
}
static int dediprog_check_devicestring(void)
{
int ret;
int fw[3];
char buf[0x11];
#if 0
/* Command Prepare Receive Device String. */
ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x7, 0x0, 0xef03,
buf, 0x1, DEFAULT_TIMEOUT);
/* The char casting is needed to stop gcc complaining about an always true comparison. */
if ((ret != 0x1) || (buf[0] != (char)0xff)) {
msg_perr("Unexpected response to Command Prepare Receive Device"
" String!\n");
return 1;
}
#endif
/* Command Receive Device String. */
ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_READ_PROG_INFO, 0, 0,
buf, 0x10, DEFAULT_TIMEOUT);
if (ret != 0x10) {
msg_perr("Incomplete/failed Command Receive Device String!\n");
return 1;
}
buf[0x10] = '\0';
msg_pdbg("Found a %s\n", buf);
if (memcmp(buf, "SF100", 0x5) != 0) {
msg_perr("Device not a SF100!\n");
return 1;
}
if (sscanf(buf, "SF100 V:%d.%d.%d ", &fw[0], &fw[1], &fw[2]) != 3) {
msg_perr("Unexpected firmware version string!\n");
return 1;
}
/* Only these versions were tested. */
if (fw[0] < 2 || fw[0] > 5) {
msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0],
fw[1], fw[2]);
return 1;
}
dediprog_firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]);
return 0;
}
static int dediprog_device_init(void)
{
int ret;
char buf[0x1];
memset(buf, 0, sizeof(buf));
ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x0B, 0x0, 0x0,
buf, 0x1, DEFAULT_TIMEOUT);
if (ret < 0) {
msg_perr("Command A failed (%s)!\n", usb_strerror());
return 1;
}
if ((ret != 0x1) || (buf[0] != 0x6f)) {
msg_perr("Unexpected response to init!\n");
return 1;
}
return 0;
}
#if 0
/* Something.
* Present in eng_detect_blink.log with firmware 3.1.8
* Always preceded by Command Receive Device String
*/
static int dediprog_command_b(void)
{
int ret;
char buf[0x3];
ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x7, 0x0, 0xef00,
buf, 0x3, DEFAULT_TIMEOUT);
if (ret < 0) {
msg_perr("Command B failed (%s)!\n", usb_strerror());
return 1;
}
if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) ||
(buf[2] != 0xff)) {
msg_perr("Unexpected response to Command B!\n");
return 1;
}
return 0;
}
#endif
static int set_target_flash(enum dediprog_target target)
{
int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_SET_TARGET, target, 0,
NULL, 0, DEFAULT_TIMEOUT);
if (ret != 0) {
msg_perr("set_target_flash failed (%s)!\n", usb_strerror());
return 1;
}
return 0;
}
#if 0
/* Returns true if the button is currently pressed. */
static bool dediprog_get_button(void)
{
char buf[1];
int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_GET_BUTTON, 0, 0,
buf, 0x1, DEFAULT_TIMEOUT);
if (ret != 0) {
msg_perr("Could not get button state (%s)!\n", usb_strerror());
return 1;
}
return buf[0] != 1;
}
#endif
static int parse_voltage(char *voltage)
{
char *tmp = NULL;
int i;
int millivolt = 0, fraction = 0;
if (!voltage || !strlen(voltage)) {
msg_perr("Empty voltage= specified.\n");
return -1;
}
millivolt = (int)strtol(voltage, &tmp, 0);
voltage = tmp;
/* Handle "," and "." as decimal point. Everything after it is assumed
* to be in decimal notation.
*/
if ((*voltage == '.') || (*voltage == ',')) {
voltage++;
for (i = 0; i < 3; i++) {
fraction *= 10;
/* Don't advance if the current character is invalid,
* but continue multiplying.
*/
if ((*voltage < '0') || (*voltage > '9'))
continue;
fraction += *voltage - '0';
voltage++;
}
/* Throw away remaining digits. */
voltage += strspn(voltage, "0123456789");
}
/* The remaining string must be empty or "mV" or "V". */
tolower_string(voltage);
/* No unit or "V". */
if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) {
millivolt *= 1000;
millivolt += fraction;
} else if (!strncmp(voltage, "mv", 2) ||
!strncmp(voltage, "milliv", 6)) {
/* No adjustment. fraction is discarded. */
} else {
/* Garbage at the end of the string. */
msg_perr("Garbage voltage= specified.\n");
return -1;
}
return millivolt;
}
static const struct spi_master spi_master_dediprog = {
.type = SPI_CONTROLLER_DEDIPROG,
.max_data_read = MAX_DATA_UNSPECIFIED,
.max_data_write = MAX_DATA_UNSPECIFIED,
.command = dediprog_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = dediprog_spi_read,
.write_256 = dediprog_spi_write_256,
.write_aai = dediprog_spi_write_aai,
};
static int dediprog_shutdown(void *data)
{
msg_pspew("%s\n", __func__);
dediprog_firmwareversion = FIRMWARE_VERSION(0, 0, 0);
/* URB 28. Command Set SPI Voltage to 0. */
if (dediprog_set_spi_voltage(0x0))
return 1;
if (usb_release_interface(dediprog_handle, 0)) {
msg_perr("Could not release USB interface!\n");
return 1;
}
if (usb_close(dediprog_handle)) {
msg_perr("Could not close USB device!\n");
return 1;
}
return 0;
}
/* URB numbers refer to the first log ever captured. */
int dediprog_init(void)
{
struct usb_device *dev;
char *voltage, *device, *spispeed, *target_str;
int spispeed_idx = 1;
int millivolt = 3500;
long usedevice = 0;
long target = 1;
int i, ret;
msg_pspew("%s\n", __func__);
spispeed = extract_programmer_param("spispeed");
if (spispeed) {
for (i = 0; spispeeds[i].name; ++i) {
if (!strcasecmp(spispeeds[i].name, spispeed)) {
spispeed_idx = i;
break;
}
}
if (!spispeeds[i].name) {
msg_perr("Error: Invalid spispeed value: '%s'.\n", spispeed);
free(spispeed);
return 1;
}
free(spispeed);
}
voltage = extract_programmer_param("voltage");
if (voltage) {
millivolt = parse_voltage(voltage);
free(voltage);
if (millivolt < 0)
return 1;
msg_pinfo("Setting voltage to %i mV\n", millivolt);
}
device = extract_programmer_param("device");
if (device) {
char *dev_suffix;
errno = 0;
usedevice = strtol(device, &dev_suffix, 10);
if (errno != 0 || device == dev_suffix) {
msg_perr("Error: Could not convert 'device'.\n");
free(device);
return 1;
}
if (usedevice < 0 || usedevice > UINT_MAX) {
msg_perr("Error: Value for 'device' is out of range.\n");
free(device);
return 1;
}
if (strlen(dev_suffix) > 0) {
msg_perr("Error: Garbage following 'device' value.\n");
free(device);
return 1;
}
msg_pinfo("Using device %li.\n", usedevice);
}
free(device);
target_str = extract_programmer_param("target");
if (target_str) {
char *target_suffix;
errno = 0;
target = strtol(target_str, &target_suffix, 10);
if (errno != 0 || target_str == target_suffix) {
msg_perr("Error: Could not convert 'target'.\n");
free(target_str);
return 1;
}
if (target < 1 || target > 2) {
msg_perr("Error: Value for 'target' is out of range.\n");
free(target_str);
return 1;
}
if (strlen(target_suffix) > 0) {
msg_perr("Error: Garbage following 'target' value.\n");
free(target_str);
return 1;
}
msg_pinfo("Using target %li.\n", target);
}
free(target_str);
/* Here comes the USB stuff. */
usb_init();
usb_find_busses();
usb_find_devices();
dev = get_device_by_vid_pid(0x0483, 0xdada, (unsigned int) usedevice);
if (!dev) {
msg_perr("Could not find a Dediprog SF100 on USB!\n");
return 1;
}
msg_pdbg("Found USB device (%04x:%04x).\n",
dev->descriptor.idVendor, dev->descriptor.idProduct);
dediprog_handle = usb_open(dev);
if (!dediprog_handle) {
msg_perr("Could not open USB device: %s\n", usb_strerror());
return 1;
}
ret = usb_set_configuration(dediprog_handle, 1);
if (ret < 0) {
msg_perr("Could not set USB device configuration: %i %s\n",
ret, usb_strerror());
if (usb_close(dediprog_handle))
msg_perr("Could not close USB device!\n");
return 1;
}
ret = usb_claim_interface(dediprog_handle, 0);
if (ret < 0) {
msg_perr("Could not claim USB device interface %i: %i %s\n",
0, ret, usb_strerror());
if (usb_close(dediprog_handle))
msg_perr("Could not close USB device!\n");
return 1;
}
dediprog_endpoint = 2;
if (register_shutdown(dediprog_shutdown, NULL))
return 1;
/* Perform basic setup. */
if (dediprog_device_init())
return 1;
if (dediprog_check_devicestring())
return 1;
/* Set all possible LEDs as soon as possible to indicate activity.
* Because knowing the firmware version is required to set the LEDs correctly we need to this after
* dediprog_setup() has queried the device and set dediprog_firmwareversion. */
dediprog_set_leds(LED_ALL);
/* Select target/socket, frequency and VCC. */
if (set_target_flash(FLASH_TYPE_APPLICATION_FLASH_1) ||
dediprog_set_spi_speed(spispeed_idx) ||
dediprog_set_spi_voltage(millivolt)) {
dediprog_set_leds(LED_ERROR);
return 1;
}
register_spi_master(&spi_master_dediprog);
dediprog_set_leds(LED_NONE);
return 0;
}