| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger |
| * Copyright (C) 2008 coresystems GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| /* |
| * Contains the common SPI chip driver functions |
| */ |
| |
| #include <stddef.h> |
| #include <string.h> |
| #include <stdbool.h> |
| #include "flash.h" |
| #include "flashchips.h" |
| #include "chipdrivers.h" |
| #include "programmer.h" |
| #include "spi.h" |
| |
| static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes) |
| { |
| static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID }; |
| int ret; |
| int i; |
| |
| ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr); |
| if (ret) |
| return ret; |
| msg_cspew("RDID returned"); |
| for (i = 0; i < bytes; i++) |
| msg_cspew(" 0x%02x", readarr[i]); |
| msg_cspew(". "); |
| return 0; |
| } |
| |
| static int spi_rems(struct flashctx *flash, unsigned char *readarr) |
| { |
| static const unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, }; |
| int ret; |
| |
| ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); |
| if (ret) |
| return ret; |
| msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]); |
| return 0; |
| } |
| |
| static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes) |
| { |
| static const unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, }; |
| int ret; |
| int i; |
| |
| ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr); |
| if (ret) |
| return ret; |
| msg_cspew("RES returned"); |
| for (i = 0; i < bytes; i++) |
| msg_cspew(" 0x%02x", readarr[i]); |
| msg_cspew(". "); |
| return 0; |
| } |
| |
| int spi_write_enable(struct flashctx *flash) |
| { |
| static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN }; |
| int result; |
| |
| /* Send WREN (Write Enable) */ |
| result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); |
| |
| if (result) |
| msg_cerr("%s failed\n", __func__); |
| |
| return result; |
| } |
| |
| int spi_write_disable(struct flashctx *flash) |
| { |
| static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI }; |
| |
| /* Send WRDI (Write Disable) */ |
| return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); |
| } |
| |
| static int probe_spi_rdid_generic(struct flashctx *flash, int bytes) |
| { |
| const struct flashchip *chip = flash->chip; |
| unsigned char readarr[4]; |
| uint32_t id1; |
| uint32_t id2; |
| |
| const int ret = spi_rdid(flash, readarr, bytes); |
| if (ret == SPI_INVALID_LENGTH) |
| msg_cinfo("%d byte RDID not supported on this SPI controller\n", bytes); |
| if (ret) |
| return 0; |
| |
| if (!oddparity(readarr[0])) |
| msg_cdbg("RDID byte 0 parity violation. "); |
| |
| /* Check if this is a continuation vendor ID. |
| * FIXME: Handle continuation device IDs. |
| */ |
| if (readarr[0] == 0x7f) { |
| if (!oddparity(readarr[1])) |
| msg_cdbg("RDID byte 1 parity violation. "); |
| id1 = (readarr[0] << 8) | readarr[1]; |
| id2 = readarr[2]; |
| if (bytes > 3) { |
| id2 <<= 8; |
| id2 |= readarr[3]; |
| } |
| } else { |
| id1 = readarr[0]; |
| id2 = (readarr[1] << 8) | readarr[2]; |
| } |
| |
| msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); |
| |
| if (id1 == chip->manufacture_id && id2 == chip->model_id) |
| return 1; |
| |
| /* Test if this is a pure vendor match. */ |
| if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id) |
| return 1; |
| |
| /* Test if there is any vendor ID. */ |
| if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00) |
| return 1; |
| |
| return 0; |
| } |
| |
| int probe_spi_rdid(struct flashctx *flash) |
| { |
| return probe_spi_rdid_generic(flash, 3); |
| } |
| |
| int probe_spi_rdid4(struct flashctx *flash) |
| { |
| return probe_spi_rdid_generic(flash, 4); |
| } |
| |
| int probe_spi_rems(struct flashctx *flash) |
| { |
| const struct flashchip *chip = flash->chip; |
| unsigned char readarr[JEDEC_REMS_INSIZE]; |
| uint32_t id1, id2; |
| |
| if (spi_rems(flash, readarr)) { |
| return 0; |
| } |
| |
| id1 = readarr[0]; |
| id2 = readarr[1]; |
| |
| msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); |
| |
| if (id1 == chip->manufacture_id && id2 == chip->model_id) |
| return 1; |
| |
| /* Test if this is a pure vendor match. */ |
| if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id) |
| return 1; |
| |
| /* Test if there is any vendor ID. */ |
| if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00) |
| return 1; |
| |
| return 0; |
| } |
| |
| int probe_spi_res1(struct flashctx *flash) |
| { |
| static const unsigned char allff[] = {0xff, 0xff, 0xff}; |
| static const unsigned char all00[] = {0x00, 0x00, 0x00}; |
| unsigned char readarr[3]; |
| uint32_t id2; |
| |
| /* We only want one-byte RES if RDID and REMS are unusable. */ |
| |
| /* Check if RDID is usable and does not return 0xff 0xff 0xff or |
| * 0x00 0x00 0x00. In that case, RES is pointless. |
| */ |
| if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) && |
| memcmp(readarr, all00, 3)) { |
| msg_cdbg("Ignoring RES in favour of RDID.\n"); |
| return 0; |
| } |
| /* Check if REMS is usable and does not return 0xff 0xff or |
| * 0x00 0x00. In that case, RES is pointless. |
| */ |
| if (!spi_rems(flash, readarr) && |
| memcmp(readarr, allff, JEDEC_REMS_INSIZE) && |
| memcmp(readarr, all00, JEDEC_REMS_INSIZE)) { |
| msg_cdbg("Ignoring RES in favour of REMS.\n"); |
| return 0; |
| } |
| |
| if (spi_res(flash, readarr, 1)) { |
| return 0; |
| } |
| |
| id2 = readarr[0]; |
| |
| msg_cdbg("%s: id 0x%x\n", __func__, id2); |
| |
| if (id2 != flash->chip->model_id) |
| return 0; |
| |
| return 1; |
| } |
| |
| int probe_spi_res2(struct flashctx *flash) |
| { |
| unsigned char readarr[2]; |
| uint32_t id1, id2; |
| |
| if (spi_res(flash, readarr, 2)) { |
| return 0; |
| } |
| |
| id1 = readarr[0]; |
| id2 = readarr[1]; |
| |
| msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); |
| |
| if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id) |
| return 0; |
| |
| return 1; |
| } |
| |
| int probe_spi_res3(struct flashctx *flash) |
| { |
| unsigned char readarr[3]; |
| uint32_t id1, id2; |
| |
| if (spi_res(flash, readarr, 3)) { |
| return 0; |
| } |
| |
| id1 = (readarr[0] << 8) | readarr[1]; |
| id2 = readarr[2]; |
| |
| msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); |
| |
| if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Only used for some Atmel chips. */ |
| int probe_spi_at25f(struct flashctx *flash) |
| { |
| static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID }; |
| unsigned char readarr[AT25F_RDID_INSIZE]; |
| uint32_t id1; |
| uint32_t id2; |
| |
| if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr)) |
| return 0; |
| |
| id1 = readarr[0]; |
| id2 = readarr[1]; |
| |
| msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); |
| |
| if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int spi_poll_wip(struct flashctx *const flash, const unsigned int poll_delay) |
| { |
| /* FIXME: We don't time out. */ |
| while (true) { |
| uint8_t status; |
| int ret = spi_read_register(flash, STATUS1, &status); |
| if (ret) |
| return ret; |
| if (!(status & SPI_SR_WIP)) |
| return 0; |
| |
| programmer_delay(poll_delay); |
| } |
| } |
| |
| /** |
| * Execute WREN plus another one byte `op`, optionally poll WIP afterwards. |
| * |
| * @param flash the flash chip's context |
| * @param op the operation to execute |
| * @param poll_delay interval in us for polling WIP, don't poll if zero |
| * @return 0 on success, non-zero otherwise |
| */ |
| static int spi_simple_write_cmd(struct flashctx *const flash, const uint8_t op, const unsigned int poll_delay) |
| { |
| struct spi_command cmds[] = { |
| { |
| .readarr = 0, |
| .writecnt = 1, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| }, { |
| .readarr = 0, |
| .writecnt = 1, |
| .writearr = (const unsigned char[]){ op }, |
| }, |
| NULL_SPI_CMD, |
| }; |
| |
| const int result = spi_send_multicommand(flash, cmds); |
| if (result) |
| msg_cerr("%s failed during command execution\n", __func__); |
| |
| const int status = poll_delay ? spi_poll_wip(flash, poll_delay) : 0; |
| |
| return result ? result : status; |
| } |
| |
| static int spi_write_extended_address_register(struct flashctx *const flash, const uint8_t regdata) |
| { |
| uint8_t op; |
| if (flash->chip->feature_bits & FEATURE_4BA_EAR_C5C8) { |
| op = JEDEC_WRITE_EXT_ADDR_REG; |
| } else if (flash->chip->feature_bits & FEATURE_4BA_EAR_1716) { |
| op = ALT_WRITE_EXT_ADDR_REG_17; |
| } else { |
| msg_cerr("Flash misses feature flag for extended-address register.\n"); |
| return -1; |
| } |
| |
| struct spi_command cmds[] = { |
| { |
| .readarr = 0, |
| .writecnt = 1, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| }, { |
| .readarr = 0, |
| .writecnt = 2, |
| .writearr = (const unsigned char[]){ op, regdata }, |
| }, |
| NULL_SPI_CMD, |
| }; |
| |
| const int result = spi_send_multicommand(flash, cmds); |
| if (result) |
| msg_cerr("%s failed during command execution\n", __func__); |
| return result; |
| } |
| |
| int spi_set_extended_address(struct flashctx *const flash, const uint8_t addr_high) |
| { |
| if (flash->address_high_byte != addr_high && |
| spi_write_extended_address_register(flash, addr_high)) |
| return -1; |
| flash->address_high_byte = addr_high; |
| return 0; |
| } |
| |
| static int spi_prepare_address(struct flashctx *const flash, uint8_t cmd_buf[], |
| const bool native_4ba, const unsigned int addr) |
| { |
| if (native_4ba || flash->in_4ba_mode) { |
| if (!spi_master_4ba(flash)) { |
| msg_cwarn("4-byte address requested but master can't handle 4-byte addresses.\n"); |
| return -1; |
| } |
| cmd_buf[1] = (addr >> 24) & 0xff; |
| cmd_buf[2] = (addr >> 16) & 0xff; |
| cmd_buf[3] = (addr >> 8) & 0xff; |
| cmd_buf[4] = (addr >> 0) & 0xff; |
| return 4; |
| } else { |
| if (flash->chip->feature_bits & FEATURE_4BA_EAR_ANY) { |
| if (spi_set_extended_address(flash, addr >> 24)) |
| return -1; |
| } else if (addr >> 24) { |
| msg_cerr("Can't handle 4-byte address for opcode '0x%02x'\n" |
| "with this chip/programmer combination.\n", cmd_buf[0]); |
| return -1; |
| } |
| cmd_buf[1] = (addr >> 16) & 0xff; |
| cmd_buf[2] = (addr >> 8) & 0xff; |
| cmd_buf[3] = (addr >> 0) & 0xff; |
| return 3; |
| } |
| } |
| |
| /** |
| * Execute WREN plus another `op` that takes an address and |
| * optional data, poll WIP afterwards. |
| * |
| * @param flash the flash chip's context |
| * @param op the operation to execute |
| * @param native_4ba whether `op` always takes a 4-byte address |
| * @param addr the address parameter to `op` |
| * @param out_bytes bytes to send after the address, |
| * may be NULL if and only if `out_bytes` is 0 |
| * @param out_bytes number of bytes to send, 256 at most, may be zero |
| * @param poll_delay interval in us for polling WIP |
| * @return 0 on success, non-zero otherwise |
| */ |
| static int spi_write_cmd(struct flashctx *const flash, const uint8_t op, |
| const bool native_4ba, const unsigned int addr, |
| const uint8_t *const out_bytes, const size_t out_len, |
| const unsigned int poll_delay) |
| { |
| uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN + 256]; |
| struct spi_command cmds[] = { |
| { |
| .readarr = 0, |
| .writecnt = 1, |
| .writearr = (const unsigned char[]){ JEDEC_WREN }, |
| }, { |
| .readarr = 0, |
| .writearr = cmd, |
| }, |
| NULL_SPI_CMD, |
| }; |
| |
| cmd[0] = op; |
| const int addr_len = spi_prepare_address(flash, cmd, native_4ba, addr); |
| if (addr_len < 0) |
| return 1; |
| |
| if (1 + addr_len + out_len > sizeof(cmd)) { |
| msg_cerr("%s called for too long a write\n", __func__); |
| return 1; |
| } |
| if (!out_bytes && out_len > 0) |
| return 1; |
| |
| memcpy(cmd + 1 + addr_len, out_bytes, out_len); |
| cmds[1].writecnt = 1 + addr_len + out_len; |
| |
| const int result = spi_send_multicommand(flash, cmds); |
| if (result) |
| msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); |
| |
| const int status = spi_poll_wip(flash, poll_delay); |
| |
| return result ? result : status; |
| } |
| |
| static int spi_chip_erase_60(struct flashctx *flash) |
| { |
| /* This usually takes 1-85s, so wait in 1s steps. */ |
| return spi_simple_write_cmd(flash, 0x60, 1000 * 1000); |
| } |
| |
| static int spi_chip_erase_62(struct flashctx *flash) |
| { |
| /* This usually takes 2-5s, so wait in 100ms steps. */ |
| return spi_simple_write_cmd(flash, 0x62, 100 * 1000); |
| } |
| |
| static int spi_chip_erase_c7(struct flashctx *flash) |
| { |
| /* This usually takes 1-85s, so wait in 1s steps. */ |
| return spi_simple_write_cmd(flash, 0xc7, 1000 * 1000); |
| } |
| |
| int spi_block_erase_52(struct flashctx *flash, unsigned int addr, |
| unsigned int blocklen) |
| { |
| /* This usually takes 100-4000ms, so wait in 100ms steps. */ |
| return spi_write_cmd(flash, 0x52, false, addr, NULL, 0, 100 * 1000); |
| } |
| |
| /* Block size is usually |
| * 32M (one die) for Micron |
| */ |
| int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 240-480s, so wait in 500ms steps. */ |
| return spi_write_cmd(flash, 0xc4, false, addr, NULL, 0, 500 * 1000); |
| } |
| |
| /* Block size is usually |
| * 64k for Macronix |
| * 32k for SST |
| * 4-32k non-uniform for EON |
| */ |
| int spi_block_erase_d8(struct flashctx *flash, unsigned int addr, |
| unsigned int blocklen) |
| { |
| /* This usually takes 100-4000ms, so wait in 100ms steps. */ |
| return spi_write_cmd(flash, 0xd8, false, addr, NULL, 0, 100 * 1000); |
| } |
| |
| /* Block size is usually |
| * 4k for PMC |
| */ |
| int spi_block_erase_d7(struct flashctx *flash, unsigned int addr, |
| unsigned int blocklen) |
| { |
| /* This usually takes 100-4000ms, so wait in 100ms steps. */ |
| return spi_write_cmd(flash, 0xd7, false, addr, NULL, 0, 100 * 1000); |
| } |
| |
| /* Page erase (usually 256B blocks) */ |
| int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This takes up to 20ms usually (on worn out devices |
| up to the 0.5s range), so wait in 1ms steps. */ |
| return spi_write_cmd(flash, 0xdb, false, addr, NULL, 0, 1 * 1000); |
| } |
| |
| /* Sector size is usually 4k, though Macronix eliteflash has 64k */ |
| int spi_block_erase_20(struct flashctx *flash, unsigned int addr, |
| unsigned int blocklen) |
| { |
| /* This usually takes 15-800ms, so wait in 10ms steps. */ |
| return spi_write_cmd(flash, 0x20, false, addr, NULL, 0, 10 * 1000); |
| } |
| |
| int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 10ms, so wait in 1ms steps. */ |
| return spi_write_cmd(flash, 0x50, false, addr, NULL, 0, 1 * 1000); |
| } |
| |
| int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 8ms, so wait in 1ms steps. */ |
| return spi_write_cmd(flash, 0x81, false, addr, NULL, 0, 1 * 1000); |
| } |
| |
| int spi_block_erase_60(struct flashctx *flash, unsigned int addr, |
| unsigned int blocklen) |
| { |
| if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) { |
| msg_cerr("%s called with incorrect arguments\n", |
| __func__); |
| return -1; |
| } |
| return spi_chip_erase_60(flash); |
| } |
| |
| int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) { |
| msg_cerr("%s called with incorrect arguments\n", |
| __func__); |
| return -1; |
| } |
| return spi_chip_erase_62(flash); |
| } |
| |
| int spi_block_erase_c7(struct flashctx *flash, unsigned int addr, |
| unsigned int blocklen) |
| { |
| if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) { |
| msg_cerr("%s called with incorrect arguments\n", |
| __func__); |
| return -1; |
| } |
| return spi_chip_erase_c7(flash); |
| } |
| |
| /* Erase 4 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ |
| int spi_block_erase_21(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 15-800ms, so wait in 10ms steps. */ |
| return spi_write_cmd(flash, 0x21, true, addr, NULL, 0, 10 * 1000); |
| } |
| |
| /* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ |
| int spi_block_erase_53(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 100-4000ms, so wait in 100ms steps. */ |
| return spi_write_cmd(flash, 0x53, true, addr, NULL, 0, 100 * 1000); |
| } |
| |
| /* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ |
| int spi_block_erase_5c(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 100-4000ms, so wait in 100ms steps. */ |
| return spi_write_cmd(flash, 0x5c, true, addr, NULL, 0, 100 * 1000); |
| } |
| |
| /* Erase 64 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ |
| int spi_block_erase_dc(struct flashctx *flash, unsigned int addr, unsigned int blocklen) |
| { |
| /* This usually takes 100-4000ms, so wait in 100ms steps. */ |
| return spi_write_cmd(flash, 0xdc, true, addr, NULL, 0, 100 * 1000); |
| } |
| |
| static const struct { |
| erasefunc_t *func; |
| uint8_t opcode; |
| } spi25_function_opcode_list[] = { |
| {&spi_block_erase_20, 0x20}, |
| {&spi_block_erase_21, 0x21}, |
| {&spi_block_erase_50, 0x50}, |
| {&spi_block_erase_52, 0x52}, |
| {&spi_block_erase_53, 0x53}, |
| {&spi_block_erase_5c, 0x5c}, |
| {&spi_block_erase_60, 0x60}, |
| {&spi_block_erase_62, 0x62}, |
| {&spi_block_erase_81, 0x81}, |
| {&spi_block_erase_c4, 0xc4}, |
| {&spi_block_erase_c7, 0xc7}, |
| {&spi_block_erase_d7, 0xd7}, |
| {&spi_block_erase_d8, 0xd8}, |
| {&spi_block_erase_db, 0xdb}, |
| {&spi_block_erase_dc, 0xdc}, |
| }; |
| |
| erasefunc_t *spi25_get_erasefn_from_opcode(uint8_t opcode) |
| { |
| size_t i; |
| for (i = 0; i < ARRAY_SIZE(spi25_function_opcode_list); i++) { |
| if (spi25_function_opcode_list[i].opcode == opcode) |
| return spi25_function_opcode_list[i].func; |
| } |
| msg_cinfo("%s: unknown erase opcode (0x%02x). Please report " |
| "this at flashprog@flashprog.org\n", __func__, opcode); |
| return NULL; |
| } |
| |
| static int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len) |
| { |
| const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_WRITE && spi_master_4ba(flash); |
| const uint8_t op = native_4ba ? JEDEC_BYTE_PROGRAM_4BA : JEDEC_BYTE_PROGRAM; |
| return spi_write_cmd(flash, op, native_4ba, addr, bytes, len, 10); |
| } |
| |
| int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes, |
| unsigned int len) |
| { |
| const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_READ && spi_master_4ba(flash); |
| uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN] = { native_4ba ? JEDEC_READ_4BA : JEDEC_READ, }; |
| |
| const int addr_len = spi_prepare_address(flash, cmd, native_4ba, address); |
| if (addr_len < 0) |
| return 1; |
| |
| /* Send Read */ |
| return spi_send_command(flash, 1 + addr_len, len, cmd, bytes); |
| } |
| |
| /* |
| * Read a part of the flash chip. |
| * Data is read in chunks with a maximum size of chunksize. |
| */ |
| int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start, |
| unsigned int len, unsigned int chunksize) |
| { |
| int ret; |
| size_t to_read; |
| for (; len; len -= to_read, buf += to_read, start += to_read) { |
| to_read = min(chunksize, len); |
| ret = spi_nbyte_read(flash, start, buf, to_read); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* |
| * Write a part of the flash chip. |
| * FIXME: Use the chunk code from Michael Karcher instead. |
| * Each page is written separately in chunks with a maximum size of chunksize. |
| */ |
| int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start, |
| unsigned int len, unsigned int chunksize) |
| { |
| unsigned int i, j, starthere, lenhere, towrite; |
| /* FIXME: page_size is the wrong variable. We need max_writechunk_size |
| * in struct flashctx to do this properly. All chips using |
| * spi_chip_write_256 have page_size set to max_writechunk_size, so |
| * we're OK for now. |
| */ |
| unsigned int page_size = flash->chip->page_size; |
| |
| /* Warning: This loop has a very unusual condition and body. |
| * The loop needs to go through each page with at least one affected |
| * byte. The lowest page number is (start / page_size) since that |
| * division rounds down. The highest page number we want is the page |
| * where the last byte of the range lives. That last byte has the |
| * address (start + len - 1), thus the highest page number is |
| * (start + len - 1) / page_size. Since we want to include that last |
| * page as well, the loop condition uses <=. |
| */ |
| for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { |
| /* Byte position of the first byte in the range in this page. */ |
| /* starthere is an offset to the base address of the chip. */ |
| starthere = max(start, i * page_size); |
| /* Length of bytes in the range in this page. */ |
| lenhere = min(start + len, (i + 1) * page_size) - starthere; |
| for (j = 0; j < lenhere; j += chunksize) { |
| int rc; |
| |
| towrite = min(chunksize, lenhere - j); |
| rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite); |
| if (rc) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Program chip using byte programming. (SLOW!) |
| * This is for chips which can only handle one byte writes |
| * and for chips where memory mapped programming is impossible |
| * (e.g. due to size constraints in IT87* for over 512 kB) |
| */ |
| /* real chunksize is 1, logical chunksize is 1 */ |
| int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| unsigned int i; |
| |
| for (i = start; i < start + len; i++) { |
| if (spi_nbyte_program(flash, i, buf + i - start, 1)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| uint32_t pos = start; |
| int result; |
| unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = { |
| JEDEC_AAI_WORD_PROGRAM, |
| }; |
| |
| /* The even start address and even length requirements can be either |
| * honored outside this function, or we can call spi_byte_program |
| * for the first and/or last byte and use AAI for the rest. |
| * FIXME: Move this to generic code. |
| */ |
| /* The data sheet requires a start address with the low bit cleared. */ |
| if (start % 2) { |
| msg_cerr("%s: start address not even!\n" |
| "Please report a bug at flashprog@flashprog.org\n", |
| __func__); |
| if (spi_chip_write_1(flash, buf, start, start % 2)) |
| return SPI_GENERIC_ERROR; |
| pos += start % 2; |
| /* Do not return an error for now. */ |
| //return SPI_GENERIC_ERROR; |
| } |
| /* The data sheet requires total AAI write length to be even. */ |
| if (len % 2) { |
| msg_cerr("%s: total write length not even!\n" |
| "Please report a bug at flashprog@flashprog.org\n", |
| __func__); |
| /* Do not return an error for now. */ |
| //return SPI_GENERIC_ERROR; |
| } |
| |
| result = spi_write_cmd(flash, JEDEC_AAI_WORD_PROGRAM, false, start, buf + pos - start, 2, 10); |
| if (result) |
| goto bailout; |
| |
| /* We already wrote 2 bytes in the multicommand step. */ |
| pos += 2; |
| |
| /* Are there at least two more bytes to write? */ |
| while (pos < start + len - 1) { |
| cmd[1] = buf[pos++ - start]; |
| cmd[2] = buf[pos++ - start]; |
| result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL); |
| if (result != 0) { |
| msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result); |
| goto bailout; |
| } |
| if (spi_poll_wip(flash, 10)) |
| goto bailout; |
| } |
| |
| /* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */ |
| result = spi_write_disable(flash); |
| if (result != 0) { |
| msg_cerr("%s failed to disable AAI mode.\n", __func__); |
| return SPI_GENERIC_ERROR; |
| } |
| |
| /* Write remaining byte (if any). */ |
| if (pos < start + len) { |
| if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2)) |
| return SPI_GENERIC_ERROR; |
| } |
| |
| return 0; |
| |
| bailout: |
| result = spi_write_disable(flash); |
| if (result != 0) |
| msg_cerr("%s failed to disable AAI mode.\n", __func__); |
| return SPI_GENERIC_ERROR; |
| } |
| |
| static int spi_enter_exit_4ba(struct flashctx *const flash, const bool enter) |
| { |
| const unsigned char cmd = enter ? JEDEC_ENTER_4_BYTE_ADDR_MODE : JEDEC_EXIT_4_BYTE_ADDR_MODE; |
| int ret = 1; |
| |
| if (flash->chip->feature_bits & FEATURE_4BA_ENTER) |
| ret = spi_send_command(flash, sizeof(cmd), 0, &cmd, NULL); |
| else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_WREN) |
| ret = spi_simple_write_cmd(flash, cmd, 0); |
| else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_EAR7) |
| ret = spi_set_extended_address(flash, enter ? 0x80 : 0x00); |
| |
| if (!ret) |
| flash->in_4ba_mode = enter; |
| return ret; |
| } |
| |
| int spi_enter_4ba(struct flashctx *const flash) |
| { |
| return spi_enter_exit_4ba(flash, true); |
| } |
| |
| int spi_exit_4ba(struct flashctx *flash) |
| { |
| return spi_enter_exit_4ba(flash, false); |
| } |