blob: 84de75e2f5b22d38f4dba7b91d2d57456fe0d829 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2008 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Contains the common SPI chip driver functions
*/
#include <stddef.h>
#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
#include "spi4ba.h"
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
{
static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
int ret;
int i;
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
if (ret)
return ret;
msg_cspew("RDID returned");
for (i = 0; i < bytes; i++)
msg_cspew(" 0x%02x", readarr[i]);
msg_cspew(". ");
return 0;
}
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
{
unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
uint32_t readaddr;
int ret;
ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd,
readarr);
if (ret == SPI_INVALID_ADDRESS) {
/* Find the lowest even address allowed for reads. */
readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
cmd[1] = (readaddr >> 16) & 0xff,
cmd[2] = (readaddr >> 8) & 0xff,
cmd[3] = (readaddr >> 0) & 0xff,
ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE,
cmd, readarr);
}
if (ret)
return ret;
msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
return 0;
}
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
{
unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
uint32_t readaddr;
int ret;
int i;
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
if (ret == SPI_INVALID_ADDRESS) {
/* Find the lowest even address allowed for reads. */
readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
cmd[1] = (readaddr >> 16) & 0xff,
cmd[2] = (readaddr >> 8) & 0xff,
cmd[3] = (readaddr >> 0) & 0xff,
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
}
if (ret)
return ret;
msg_cspew("RES returned");
for (i = 0; i < bytes; i++)
msg_cspew(" 0x%02x", readarr[i]);
msg_cspew(". ");
return 0;
}
int spi_write_enable(struct flashctx *flash)
{
static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
int result;
/* Send WREN (Write Enable) */
result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (result)
msg_cerr("%s failed\n", __func__);
return result;
}
int spi_write_disable(struct flashctx *flash)
{
static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
/* Send WRDI (Write Disable) */
return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
}
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
{
const struct flashchip *chip = flash->chip;
unsigned char readarr[4];
uint32_t id1;
uint32_t id2;
if (spi_rdid(flash, readarr, bytes)) {
return 0;
}
if (!oddparity(readarr[0]))
msg_cdbg("RDID byte 0 parity violation. ");
/* Check if this is a continuation vendor ID.
* FIXME: Handle continuation device IDs.
*/
if (readarr[0] == 0x7f) {
if (!oddparity(readarr[1]))
msg_cdbg("RDID byte 1 parity violation. ");
id1 = (readarr[0] << 8) | readarr[1];
id2 = readarr[2];
if (bytes > 3) {
id2 <<= 8;
id2 |= readarr[3];
}
} else {
id1 = readarr[0];
id2 = (readarr[1] << 8) | readarr[2];
}
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
if (id1 == chip->manufacture_id && id2 == chip->model_id)
return 1;
/* Test if this is a pure vendor match. */
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
return 1;
/* Test if there is any vendor ID. */
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
return 1;
return 0;
}
int probe_spi_rdid(struct flashctx *flash)
{
return probe_spi_rdid_generic(flash, 3);
}
int probe_spi_rdid4(struct flashctx *flash)
{
/* Some SPI controllers do not support commands with writecnt=1 and
* readcnt=4.
*/
switch (flash->mst->spi.type) {
#if CONFIG_INTERNAL == 1
#if defined(__i386__) || defined(__x86_64__)
case SPI_CONTROLLER_IT87XX:
case SPI_CONTROLLER_WBSIO:
msg_cinfo("4 byte RDID not supported on this SPI controller\n");
return 0;
break;
#endif
#endif
default:
return probe_spi_rdid_generic(flash, 4);
}
return 0;
}
int probe_spi_rems(struct flashctx *flash)
{
const struct flashchip *chip = flash->chip;
unsigned char readarr[JEDEC_REMS_INSIZE];
uint32_t id1, id2;
if (spi_rems(flash, readarr)) {
return 0;
}
id1 = readarr[0];
id2 = readarr[1];
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
if (id1 == chip->manufacture_id && id2 == chip->model_id)
return 1;
/* Test if this is a pure vendor match. */
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
return 1;
/* Test if there is any vendor ID. */
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
return 1;
return 0;
}
int probe_spi_res1(struct flashctx *flash)
{
static const unsigned char allff[] = {0xff, 0xff, 0xff};
static const unsigned char all00[] = {0x00, 0x00, 0x00};
unsigned char readarr[3];
uint32_t id2;
/* We only want one-byte RES if RDID and REMS are unusable. */
/* Check if RDID is usable and does not return 0xff 0xff 0xff or
* 0x00 0x00 0x00. In that case, RES is pointless.
*/
if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
memcmp(readarr, all00, 3)) {
msg_cdbg("Ignoring RES in favour of RDID.\n");
return 0;
}
/* Check if REMS is usable and does not return 0xff 0xff or
* 0x00 0x00. In that case, RES is pointless.
*/
if (!spi_rems(flash, readarr) &&
memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
msg_cdbg("Ignoring RES in favour of REMS.\n");
return 0;
}
if (spi_res(flash, readarr, 1)) {
return 0;
}
id2 = readarr[0];
msg_cdbg("%s: id 0x%x\n", __func__, id2);
if (id2 != flash->chip->model_id)
return 0;
return 1;
}
int probe_spi_res2(struct flashctx *flash)
{
unsigned char readarr[2];
uint32_t id1, id2;
if (spi_res(flash, readarr, 2)) {
return 0;
}
id1 = readarr[0];
id2 = readarr[1];
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
return 0;
return 1;
}
int probe_spi_res3(struct flashctx *flash)
{
unsigned char readarr[3];
uint32_t id1, id2;
if (spi_res(flash, readarr, 3)) {
return 0;
}
id1 = (readarr[0] << 8) | readarr[1];
id2 = readarr[2];
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
return 0;
return 1;
}
/* Only used for some Atmel chips. */
int probe_spi_at25f(struct flashctx *flash)
{
static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
unsigned char readarr[AT25F_RDID_INSIZE];
uint32_t id1;
uint32_t id2;
if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
return 0;
id1 = readarr[0];
id2 = readarr[1];
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
return 1;
return 0;
}
static int spi_poll_wip(struct flashctx *const flash, const unsigned int poll_delay)
{
/* FIXME: We can't tell if spi_read_status_register() failed. */
/* FIXME: We don't time out. */
while (spi_read_status_register(flash) & SPI_SR_WIP)
programmer_delay(poll_delay);
/* FIXME: Check the status register for errors. */
return 0;
}
/**
* Execute WREN plus another one byte `op`, optionally poll WIP afterwards.
*
* @param flash the flash chip's context
* @param op the operation to execute
* @param poll_delay interval in us for polling WIP, don't poll if zero
* @return 0 on success, non-zero otherwise
*/
static int spi_simple_write_cmd(struct flashctx *const flash, const uint8_t op, const unsigned int poll_delay)
{
struct spi_command cmds[] = {
{
.writecnt = 1,
.writearr = (const unsigned char[]){ JEDEC_WREN },
}, {
.writecnt = 1,
.writearr = (const unsigned char[]){ op },
},
NULL_SPI_CMD,
};
const int result = spi_send_multicommand(flash, cmds);
if (result)
msg_cerr("%s failed during command execution\n", __func__);
const int status = poll_delay ? spi_poll_wip(flash, poll_delay) : 0;
return result ? result : status;
}
static int spi_prepare_address(struct flashctx *const flash,
uint8_t cmd_buf[], const unsigned int addr)
{
/* TODO: extend for 4BA */
cmd_buf[1] = (addr >> 16) & 0xff;
cmd_buf[2] = (addr >> 8) & 0xff;
cmd_buf[3] = (addr >> 0) & 0xff;
return 3;
}
/**
* Execute WREN plus another `op` that takes an address and
* optional data, poll WIP afterwards.
*
* @param flash the flash chip's context
* @param op the operation to execute
* @param addr the address parameter to `op`
* @param out_bytes bytes to send after the address,
* may be NULL if and only if `out_bytes` is 0
* @param out_bytes number of bytes to send, 256 at most, may be zero
* @param poll_delay interval in us for polling WIP
* @return 0 on success, non-zero otherwise
*/
static int spi_write_cmd(struct flashctx *const flash,
const uint8_t op, const unsigned int addr,
const uint8_t *const out_bytes, const size_t out_len,
const unsigned int poll_delay)
{
uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN + 256];
struct spi_command cmds[] = {
{
.writecnt = 1,
.writearr = (const unsigned char[]){ JEDEC_WREN },
}, {
.writearr = cmd,
},
NULL_SPI_CMD,
};
cmd[0] = op;
const int addr_len = spi_prepare_address(flash, cmd, addr);
if (addr_len < 0)
return 1;
if (1 + addr_len + out_len > sizeof(cmd)) {
msg_cerr("%s called for too long a write\n", __func__);
return 1;
}
memcpy(cmd + 1 + addr_len, out_bytes, out_len);
cmds[1].writecnt = 1 + addr_len + out_len;
const int result = spi_send_multicommand(flash, cmds);
if (result)
msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
const int status = spi_poll_wip(flash, poll_delay);
return result ? result : status;
}
int spi_chip_erase_60(struct flashctx *flash)
{
/* This usually takes 1-85s, so wait in 1s steps. */
return spi_simple_write_cmd(flash, 0x60, 1000 * 1000);
}
int spi_chip_erase_62(struct flashctx *flash)
{
/* This usually takes 2-5s, so wait in 100ms steps. */
return spi_simple_write_cmd(flash, 0x62, 100 * 1000);
}
int spi_chip_erase_c7(struct flashctx *flash)
{
/* This usually takes 1-85s, so wait in 1s steps. */
return spi_simple_write_cmd(flash, 0xc7, 1000 * 1000);
}
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0x52, addr, NULL, 0, 100 * 1000);
}
/* Block size is usually
* 32M (one die) for Micron
*/
int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 240-480s, so wait in 500ms steps. */
return spi_write_cmd(flash, 0xc4, addr, NULL, 0, 500 * 1000);
}
/* Block size is usually
* 64k for Macronix
* 32k for SST
* 4-32k non-uniform for EON
*/
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0xd8, addr, NULL, 0, 100 * 1000);
}
/* Block size is usually
* 4k for PMC
*/
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0xd7, addr, NULL, 0, 100 * 1000);
}
/* Page erase (usually 256B blocks) */
int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This takes up to 20ms usually (on worn out devices
up to the 0.5s range), so wait in 1ms steps. */
return spi_write_cmd(flash, 0xdb, addr, NULL, 0, 1 * 1000);
}
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 15-800ms, so wait in 10ms steps. */
return spi_write_cmd(flash, 0x20, addr, NULL, 0, 10 * 1000);
}
int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 10ms, so wait in 1ms steps. */
return spi_write_cmd(flash, 0x50, addr, NULL, 0, 1 * 1000);
}
int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 8ms, so wait in 1ms steps. */
return spi_write_cmd(flash, 0x81, addr, NULL, 0, 1 * 1000);
}
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n",
__func__);
return -1;
}
return spi_chip_erase_60(flash);
}
int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n",
__func__);
return -1;
}
return spi_chip_erase_62(flash);
}
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n",
__func__);
return -1;
}
return spi_chip_erase_c7(flash);
}
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
{
switch(opcode){
case 0xff:
case 0x00:
/* Not specified, assuming "not supported". */
return NULL;
case 0x20:
return &spi_block_erase_20;
case 0x50:
return &spi_block_erase_50;
case 0x52:
return &spi_block_erase_52;
case 0x60:
return &spi_block_erase_60;
case 0x62:
return &spi_block_erase_62;
case 0x81:
return &spi_block_erase_81;
case 0xc4:
return &spi_block_erase_c4;
case 0xc7:
return &spi_block_erase_c7;
case 0xd7:
return &spi_block_erase_d7;
case 0xd8:
return &spi_block_erase_d8;
case 0xdb:
return &spi_block_erase_db;
default:
msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
"this at flashrom@flashrom.org\n", __func__, opcode);
return NULL;
}
}
static int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len)
{
return spi_write_cmd(flash, JEDEC_BYTE_PROGRAM, addr, bytes, len, 10);
}
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
unsigned int len)
{
uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN] = { JEDEC_READ, };
const int addr_len = spi_prepare_address(flash, cmd, address);
if (addr_len < 0)
return 1;
/* Send Read */
return spi_send_command(flash, 1 + addr_len, len, cmd, bytes);
}
/*
* Read a part of the flash chip.
* FIXME: Use the chunk code from Michael Karcher instead.
* Each naturally aligned area is read separately in chunks with a maximum size of chunksize.
*/
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
unsigned int len, unsigned int chunksize)
{
int rc = 0;
unsigned int i, j, starthere, lenhere, toread;
/* Limit for multi-die 4-byte-addressing chips. */
unsigned int area_size = min(flash->chip->total_size * 1024, 16 * 1024 * 1024);
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each area with at least one affected
* byte. The lowest area number is (start / area_size) since that
* division rounds down. The highest area number we want is the area
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest area number is
* (start + len - 1) / area_size. Since we want to include that last
* area as well, the loop condition uses <=.
*/
for (i = start / area_size; i <= (start + len - 1) / area_size; i++) {
/* Byte position of the first byte in the range in this area. */
/* starthere is an offset to the base address of the chip. */
starthere = max(start, i * area_size);
/* Length of bytes in the range in this area. */
lenhere = min(start + len, (i + 1) * area_size) - starthere;
for (j = 0; j < lenhere; j += chunksize) {
toread = min(chunksize, lenhere - j);
rc = (flash->chip->feature_bits & FEATURE_4BA_SUPPORT) == 0
? spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread)
: flash->chip->four_bytes_addr_funcs.read_nbyte(flash, starthere + j,
buf + starthere - start + j, toread);
if (rc)
break;
}
if (rc)
break;
}
return rc;
}
/*
* Write a part of the flash chip.
* FIXME: Use the chunk code from Michael Karcher instead.
* Each page is written separately in chunks with a maximum size of chunksize.
*/
int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start,
unsigned int len, unsigned int chunksize)
{
int rc = 0;
unsigned int i, j, starthere, lenhere, towrite;
/* FIXME: page_size is the wrong variable. We need max_writechunk_size
* in struct flashctx to do this properly. All chips using
* spi_chip_write_256 have page_size set to max_writechunk_size, so
* we're OK for now.
*/
unsigned int page_size = flash->chip->page_size;
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each page with at least one affected
* byte. The lowest page number is (start / page_size) since that
* division rounds down. The highest page number we want is the page
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest page number is
* (start + len - 1) / page_size. Since we want to include that last
* page as well, the loop condition uses <=.
*/
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
/* Byte position of the first byte in the range in this page. */
/* starthere is an offset to the base address of the chip. */
starthere = max(start, i * page_size);
/* Length of bytes in the range in this page. */
lenhere = min(start + len, (i + 1) * page_size) - starthere;
for (j = 0; j < lenhere; j += chunksize) {
towrite = min(chunksize, lenhere - j);
rc = (flash->chip->feature_bits & FEATURE_4BA_SUPPORT) == 0
? spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite)
: flash->chip->four_bytes_addr_funcs.program_nbyte(flash, starthere + j,
buf + starthere - start + j, towrite);
if (rc)
break;
while (spi_read_status_register(flash) & SPI_SR_WIP)
programmer_delay(10);
}
if (rc)
break;
}
return rc;
}
/*
* Program chip using byte programming. (SLOW!)
* This is for chips which can only handle one byte writes
* and for chips where memory mapped programming is impossible
* (e.g. due to size constraints in IT87* for over 512 kB)
*/
/* real chunksize is 1, logical chunksize is 1 */
int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
unsigned int i;
int result = 0;
for (i = start; i < start + len; i++) {
result = (flash->chip->feature_bits & FEATURE_4BA_SUPPORT) == 0
? spi_nbyte_program(flash, i, buf + i - start, 1)
: flash->chip->four_bytes_addr_funcs.program_byte(flash, i, buf[i - start]);
if (result)
return 1;
while (spi_read_status_register(flash) & SPI_SR_WIP)
programmer_delay(10);
}
return 0;
}
int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
uint32_t pos = start;
int result;
unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
JEDEC_AAI_WORD_PROGRAM,
};
switch (flash->mst->spi.type) {
#if CONFIG_INTERNAL == 1
#if defined(__i386__) || defined(__x86_64__)
case SPI_CONTROLLER_IT87XX:
case SPI_CONTROLLER_WBSIO:
msg_perr("%s: impossible with this SPI controller,"
" degrading to byte program\n", __func__);
return spi_chip_write_1(flash, buf, start, len);
#endif
#endif
default:
break;
}
/* The even start address and even length requirements can be either
* honored outside this function, or we can call spi_byte_program
* for the first and/or last byte and use AAI for the rest.
* FIXME: Move this to generic code.
*/
/* The data sheet requires a start address with the low bit cleared. */
if (start % 2) {
msg_cerr("%s: start address not even! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
if (spi_chip_write_1(flash, buf, start, start % 2))
return SPI_GENERIC_ERROR;
pos += start % 2;
/* Do not return an error for now. */
//return SPI_GENERIC_ERROR;
}
/* The data sheet requires total AAI write length to be even. */
if (len % 2) {
msg_cerr("%s: total write length not even! Please report a "
"bug at flashrom@flashrom.org\n", __func__);
/* Do not return an error for now. */
//return SPI_GENERIC_ERROR;
}
result = spi_write_cmd(flash, JEDEC_AAI_WORD_PROGRAM, start, buf + pos - start, 2, 10);
if (result)
goto bailout;
/* We already wrote 2 bytes in the multicommand step. */
pos += 2;
/* Are there at least two more bytes to write? */
while (pos < start + len - 1) {
cmd[1] = buf[pos++ - start];
cmd[2] = buf[pos++ - start];
result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
if (result != 0) {
msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result);
goto bailout;
}
if (spi_poll_wip(flash, 10))
goto bailout;
}
/* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */
result = spi_write_disable(flash);
if (result != 0) {
msg_cerr("%s failed to disable AAI mode.\n", __func__);
return SPI_GENERIC_ERROR;
}
/* Write remaining byte (if any). */
if (pos < start + len) {
if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
return SPI_GENERIC_ERROR;
pos += pos % 2;
}
return 0;
bailout:
result = spi_write_disable(flash);
if (result != 0)
msg_cerr("%s failed to disable AAI mode.\n", __func__);
return SPI_GENERIC_ERROR;
}