blob: 948dc0bc88ba8666c317f900f9fb69214d76698d [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <string.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
#include "writeprotect.h"
enum emu_chip {
EMULATE_NONE,
EMULATE_ST_M25P10_RES,
EMULATE_SST_SST25VF040_REMS,
EMULATE_SST_SST25VF032B,
EMULATE_MACRONIX_MX25L6436,
EMULATE_WINBOND_W25Q128FV,
EMULATE_SPANSION_S25FL128L,
};
struct emu_data {
enum emu_chip emu_chip;
char *emu_persistent_image;
unsigned int emu_chip_size;
/* Note: W25Q128FV doesn't change value of SR2 if it's not provided, but
* even its previous generations do, so don't forget to update
* WRSR code on enabling WRSR_EXT2 for more chips. */
bool emu_wrsr_ext2;
bool emu_wrsr_ext3;
bool emu_modified; /* is the image modified since reading it? */
uint8_t emu_status[3];
uint8_t emu_status_len; /* number of emulated status registers */
unsigned int emu_max_byteprogram_size;
unsigned int emu_max_aai_size;
unsigned int emu_jedec_se_size;
unsigned int emu_jedec_be_52_size;
unsigned int emu_jedec_be_d8_size;
unsigned int emu_jedec_ce_60_size;
unsigned int emu_jedec_ce_c7_size;
unsigned char spi_blacklist[256];
unsigned char spi_ignorelist[256];
unsigned int spi_blacklist_size;
unsigned int spi_ignorelist_size;
bool hwwp; /* state of hardware write protection */
/* wp_start == wp_end when write-protection is disabled */
uint32_t wp_start;
uint32_t wp_end;
unsigned int spi_write_256_chunksize;
uint8_t *flashchip_contents;
};
/* A legit complete SFDP table based on the MX25L6436E (rev. 1.8) datasheet. */
static const uint8_t sfdp_table[] = {
0x53, 0x46, 0x44, 0x50, // @0x00: SFDP signature
0x00, 0x01, 0x01, 0xFF, // @0x04: revision 1.0, 2 headers
0x00, 0x00, 0x01, 0x09, // @0x08: JEDEC SFDP header rev. 1.0, 9 DW long
0x1C, 0x00, 0x00, 0xFF, // @0x0C: PTP0 = 0x1C (instead of 0x30)
0xC2, 0x00, 0x01, 0x04, // @0x10: Macronix header rev. 1.0, 4 DW long
0x48, 0x00, 0x00, 0xFF, // @0x14: PTP1 = 0x48 (instead of 0x60)
0xFF, 0xFF, 0xFF, 0xFF, // @0x18: hole.
0xE5, 0x20, 0xC9, 0xFF, // @0x1C: SFDP parameter table start
0xFF, 0xFF, 0xFF, 0x03, // @0x20
0x00, 0xFF, 0x08, 0x6B, // @0x24
0x08, 0x3B, 0x00, 0xFF, // @0x28
0xEE, 0xFF, 0xFF, 0xFF, // @0x2C
0xFF, 0xFF, 0x00, 0x00, // @0x30
0xFF, 0xFF, 0x00, 0xFF, // @0x34
0x0C, 0x20, 0x0F, 0x52, // @0x38
0x10, 0xD8, 0x00, 0xFF, // @0x3C: SFDP parameter table end
0xFF, 0xFF, 0xFF, 0xFF, // @0x40: hole.
0xFF, 0xFF, 0xFF, 0xFF, // @0x44: hole.
0x00, 0x36, 0x00, 0x27, // @0x48: Macronix parameter table start
0xF4, 0x4F, 0xFF, 0xFF, // @0x4C
0xD9, 0xC8, 0xFF, 0xFF, // @0x50
0xFF, 0xFF, 0xFF, 0xFF, // @0x54: Macronix parameter table end
};
static int dummy_spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr);
static int dummy_spi_write_256(struct flashctx *flash, const uint8_t *buf,
unsigned int start, unsigned int len);
static void dummy_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr);
static void dummy_chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr);
static void dummy_chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr);
static void dummy_chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len);
static uint8_t dummy_chip_readb(const struct flashctx *flash, const chipaddr addr);
static uint16_t dummy_chip_readw(const struct flashctx *flash, const chipaddr addr);
static uint32_t dummy_chip_readl(const struct flashctx *flash, const chipaddr addr);
static void dummy_chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len);
static bool dummy_spi_probe_opcode(const struct flashctx *flash, uint8_t opcode);
static void *dummy_map(const char *descr, uintptr_t phys_addr, size_t len);
static void dummy_unmap(void *virt_addr, size_t len);
static const struct spi_master spi_master_dummyflasher = {
.features = SPI_MASTER_4BA,
.max_data_read = MAX_DATA_READ_UNLIMITED,
.max_data_write = MAX_DATA_UNSPECIFIED,
.command = dummy_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = default_spi_read,
.write_256 = dummy_spi_write_256,
.probe_opcode = dummy_spi_probe_opcode,
};
static const struct par_master par_master_dummyflasher = {
.chip_readb = dummy_chip_readb,
.chip_readw = dummy_chip_readw,
.chip_readl = dummy_chip_readl,
.chip_readn = dummy_chip_readn,
.chip_writeb = dummy_chip_writeb,
.chip_writew = dummy_chip_writew,
.chip_writel = dummy_chip_writel,
.chip_writen = dummy_chip_writen,
.map_flash = dummy_map,
.unmap_flash = dummy_unmap,
};
static int dummy_shutdown(void *data)
{
msg_pspew("%s\n", __func__);
struct emu_data *emu_data = (struct emu_data *)data;
if (emu_data->emu_chip != EMULATE_NONE) {
if (emu_data->emu_persistent_image && emu_data->emu_modified) {
msg_pdbg("Writing %s\n", emu_data->emu_persistent_image);
write_buf_to_file(emu_data->flashchip_contents,
emu_data->emu_chip_size,
emu_data->emu_persistent_image);
}
free(emu_data->emu_persistent_image);
free(emu_data->flashchip_contents);
}
free(data);
return 0;
}
static int init_data(struct emu_data *data, enum chipbustype *dummy_buses_supported)
{
char *bustext = NULL;
char *tmp = NULL;
unsigned int i;
char *endptr;
char *status = NULL;
bustext = extract_programmer_param("bus");
msg_pdbg("Requested buses are: %s\n", bustext ? bustext : "default");
if (!bustext)
bustext = strdup("parallel+lpc+fwh+spi");
/* Convert the parameters to lowercase. */
tolower_string(bustext);
*dummy_buses_supported = BUS_NONE;
if (strstr(bustext, "parallel")) {
*dummy_buses_supported |= BUS_PARALLEL;
msg_pdbg("Enabling support for %s flash.\n", "parallel");
}
if (strstr(bustext, "lpc")) {
*dummy_buses_supported |= BUS_LPC;
msg_pdbg("Enabling support for %s flash.\n", "LPC");
}
if (strstr(bustext, "fwh")) {
*dummy_buses_supported |= BUS_FWH;
msg_pdbg("Enabling support for %s flash.\n", "FWH");
}
if (strstr(bustext, "spi")) {
*dummy_buses_supported |= BUS_SPI;
msg_pdbg("Enabling support for %s flash.\n", "SPI");
}
if (*dummy_buses_supported == BUS_NONE)
msg_pdbg("Support for all flash bus types disabled.\n");
free(bustext);
tmp = extract_programmer_param("spi_write_256_chunksize");
if (tmp) {
data->spi_write_256_chunksize = strtoul(tmp, &endptr, 0);
if (*endptr != '\0' || data->spi_write_256_chunksize < 1) {
msg_perr("invalid spi_write_256_chunksize\n");
free(tmp);
return 1;
}
free(tmp);
}
tmp = extract_programmer_param("spi_blacklist");
if (tmp) {
i = strlen(tmp);
if (!strncmp(tmp, "0x", 2)) {
i -= 2;
memmove(tmp, tmp + 2, i + 1);
}
if ((i > 512) || (i % 2)) {
msg_perr("Invalid SPI command blacklist length\n");
free(tmp);
return 1;
}
data->spi_blacklist_size = i / 2;
for (i = 0; i < data->spi_blacklist_size * 2; i++) {
if (!isxdigit((unsigned char)tmp[i])) {
msg_perr("Invalid char \"%c\" in SPI command "
"blacklist\n", tmp[i]);
free(tmp);
return 1;
}
}
for (i = 0; i < data->spi_blacklist_size; i++) {
unsigned int tmp2;
/* SCNx8 is apparently not supported by MSVC (and thus
* MinGW), so work around it with an extra variable
*/
sscanf(tmp + i * 2, "%2x", &tmp2);
data->spi_blacklist[i] = (uint8_t)tmp2;
}
msg_pdbg("SPI blacklist is ");
for (i = 0; i < data->spi_blacklist_size; i++)
msg_pdbg("%02x ", data->spi_blacklist[i]);
msg_pdbg(", size %u\n", data->spi_blacklist_size);
}
free(tmp);
tmp = extract_programmer_param("spi_ignorelist");
if (tmp) {
i = strlen(tmp);
if (!strncmp(tmp, "0x", 2)) {
i -= 2;
memmove(tmp, tmp + 2, i + 1);
}
if ((i > 512) || (i % 2)) {
msg_perr("Invalid SPI command ignorelist length\n");
free(tmp);
return 1;
}
data->spi_ignorelist_size = i / 2;
for (i = 0; i < data->spi_ignorelist_size * 2; i++) {
if (!isxdigit((unsigned char)tmp[i])) {
msg_perr("Invalid char \"%c\" in SPI command "
"ignorelist\n", tmp[i]);
free(tmp);
return 1;
}
}
for (i = 0; i < data->spi_ignorelist_size; i++) {
unsigned int tmp2;
/* SCNx8 is apparently not supported by MSVC (and thus
* MinGW), so work around it with an extra variable
*/
sscanf(tmp + i * 2, "%2x", &tmp2);
data->spi_ignorelist[i] = (uint8_t)tmp2;
}
msg_pdbg("SPI ignorelist is ");
for (i = 0; i < data->spi_ignorelist_size; i++)
msg_pdbg("%02x ", data->spi_ignorelist[i]);
msg_pdbg(", size %u\n", data->spi_ignorelist_size);
}
free(tmp);
tmp = extract_programmer_param("hwwp");
if (tmp) {
if (!strcmp(tmp, "yes")) {
msg_pdbg("Emulated chip will have hardware WP enabled\n");
data->hwwp = true;
} else if (!strcmp(tmp, "no")) {
msg_pdbg("Emulated chip will have hardware WP disabled\n");
} else {
msg_perr("hwwp can be \"yes\" or \"no\"\n");
free(tmp);
return 1;
}
free(tmp);
}
tmp = extract_programmer_param("emulate");
if (!tmp) {
msg_pdbg("Not emulating any flash chip.\n");
/* Nothing else to do. */
return 0;
}
if (!strcmp(tmp, "M25P10.RES")) {
data->emu_chip = EMULATE_ST_M25P10_RES;
data->emu_chip_size = 128 * 1024;
data->emu_max_byteprogram_size = 128;
data->emu_max_aai_size = 0;
data->emu_status_len = 1;
data->emu_jedec_se_size = 0;
data->emu_jedec_be_52_size = 0;
data->emu_jedec_be_d8_size = 32 * 1024;
data->emu_jedec_ce_60_size = 0;
data->emu_jedec_ce_c7_size = data->emu_chip_size;
msg_pdbg("Emulating ST M25P10.RES SPI flash chip (RES, page "
"write)\n");
}
if (!strcmp(tmp, "SST25VF040.REMS")) {
data->emu_chip = EMULATE_SST_SST25VF040_REMS;
data->emu_chip_size = 512 * 1024;
data->emu_max_byteprogram_size = 1;
data->emu_max_aai_size = 0;
data->emu_status_len = 1;
data->emu_jedec_se_size = 4 * 1024;
data->emu_jedec_be_52_size = 32 * 1024;
data->emu_jedec_be_d8_size = 0;
data->emu_jedec_ce_60_size = data->emu_chip_size;
data->emu_jedec_ce_c7_size = 0;
msg_pdbg("Emulating SST SST25VF040.REMS SPI flash chip (REMS, "
"byte write)\n");
}
if (!strcmp(tmp, "SST25VF032B")) {
data->emu_chip = EMULATE_SST_SST25VF032B;
data->emu_chip_size = 4 * 1024 * 1024;
data->emu_max_byteprogram_size = 1;
data->emu_max_aai_size = 2;
data->emu_status_len = 1;
data->emu_jedec_se_size = 4 * 1024;
data->emu_jedec_be_52_size = 32 * 1024;
data->emu_jedec_be_d8_size = 64 * 1024;
data->emu_jedec_ce_60_size = data->emu_chip_size;
data->emu_jedec_ce_c7_size = data->emu_chip_size;
msg_pdbg("Emulating SST SST25VF032B SPI flash chip (RDID, AAI "
"write)\n");
}
if (!strcmp(tmp, "MX25L6436")) {
data->emu_chip = EMULATE_MACRONIX_MX25L6436;
data->emu_chip_size = 8 * 1024 * 1024;
data->emu_max_byteprogram_size = 256;
data->emu_max_aai_size = 0;
data->emu_status_len = 1;
data->emu_jedec_se_size = 4 * 1024;
data->emu_jedec_be_52_size = 32 * 1024;
data->emu_jedec_be_d8_size = 64 * 1024;
data->emu_jedec_ce_60_size = data->emu_chip_size;
data->emu_jedec_ce_c7_size = data->emu_chip_size;
msg_pdbg("Emulating Macronix MX25L6436 SPI flash chip (RDID, "
"SFDP)\n");
}
if (!strcmp(tmp, "W25Q128FV")) {
data->emu_chip = EMULATE_WINBOND_W25Q128FV;
data->emu_wrsr_ext2 = true;
data->emu_chip_size = 16 * 1024 * 1024;
data->emu_max_byteprogram_size = 256;
data->emu_max_aai_size = 0;
data->emu_status_len = 3;
data->emu_jedec_se_size = 4 * 1024;
data->emu_jedec_be_52_size = 32 * 1024;
data->emu_jedec_be_d8_size = 64 * 1024;
data->emu_jedec_ce_60_size = data->emu_chip_size;
data->emu_jedec_ce_c7_size = data->emu_chip_size;
msg_pdbg("Emulating Winbond W25Q128FV SPI flash chip (RDID)\n");
}
if (!strcmp(tmp, "S25FL128L")) {
data->emu_chip = EMULATE_SPANSION_S25FL128L;
data->emu_wrsr_ext2 = true;
data->emu_wrsr_ext3 = true;
data->emu_chip_size = 16 * 1024 * 1024;
data->emu_max_byteprogram_size = 256;
data->emu_max_aai_size = 0;
data->emu_status_len = 3;
data->emu_jedec_se_size = 4 * 1024;
data->emu_jedec_be_52_size = 32 * 1024;
data->emu_jedec_be_d8_size = 64 * 1024;
data->emu_jedec_ce_60_size = data->emu_chip_size;
data->emu_jedec_ce_c7_size = data->emu_chip_size;
msg_pdbg("Emulating Spansion S25FL128L SPI flash chip (RES, RDID, WP)\n");
}
if (data->emu_chip == EMULATE_NONE) {
msg_perr("Invalid chip specified for emulation: %s\n", tmp);
free(tmp);
return 1;
}
free(tmp);
status = extract_programmer_param("spi_status");
if (status) {
unsigned int emu_status;
errno = 0;
emu_status = strtoul(status, &endptr, 0);
if (errno != 0 || status == endptr) {
free(status);
msg_perr("Error: initial status register specified, "
"but the value could not be converted.\n");
return 1;
}
free(status);
data->emu_status[0] = emu_status;
data->emu_status[1] = emu_status >> 8;
data->emu_status[2] = emu_status >> 16;
if (data->emu_status_len == 3) {
msg_pdbg("Initial status registers:\n"
"\tSR1 is set to 0x%02x\n"
"\tSR2 is set to 0x%02x\n"
"\tSR3 is set to 0x%02x\n",
data->emu_status[0], data->emu_status[1], data->emu_status[2]);
} else if (data->emu_status_len == 2) {
msg_pdbg("Initial status registers:\n"
"\tSR1 is set to 0x%02x\n"
"\tSR2 is set to 0x%02x\n",
data->emu_status[0], data->emu_status[1]);
} else {
msg_pdbg("Initial status register is set to 0x%02x.\n",
data->emu_status[0]);
}
}
data->flashchip_contents = malloc(data->emu_chip_size);
if (!data->flashchip_contents) {
msg_perr("Out of memory!\n");
return 1;
}
return 0;
}
static int dummy_init(struct flashprog_programmer *const prog)
{
int ret = 0;
struct stat image_stat;
struct emu_data *data = calloc(1, sizeof(*data));
if (!data) {
msg_perr("Out of memory!\n");
return 1;
}
data->emu_chip = EMULATE_NONE;
data->spi_write_256_chunksize = 256;
msg_pspew("%s\n", __func__);
enum chipbustype dummy_buses_supported;
if (init_data(data, &dummy_buses_supported)) {
free(data);
return 1;
}
if (data->emu_chip == EMULATE_NONE) {
msg_pdbg("Not emulating any flash chip.\n");
/* Nothing else to do. */
goto dummy_init_out;
}
msg_pdbg("Filling fake flash chip with 0xff, size %i\n", data->emu_chip_size);
memset(data->flashchip_contents, 0xff, data->emu_chip_size);
/* Will be freed by shutdown function if necessary. */
data->emu_persistent_image = extract_programmer_param("image");
if (!data->emu_persistent_image) {
/* Nothing else to do. */
goto dummy_init_out;
}
/* We will silently (in default verbosity) ignore the file if it does not exist (yet) or the size does
* not match the emulated chip. */
if (!stat(data->emu_persistent_image, &image_stat)) {
msg_pdbg("Found persistent image %s, %jd B ",
data->emu_persistent_image, (intmax_t)image_stat.st_size);
if ((uintmax_t)image_stat.st_size == data->emu_chip_size) {
msg_pdbg("matches.\n");
msg_pdbg("Reading %s\n", data->emu_persistent_image);
if (read_buf_from_file(data->flashchip_contents, data->emu_chip_size,
data->emu_persistent_image)) {
msg_perr("Unable to read %s\n", data->emu_persistent_image);
free(data->emu_persistent_image);
free(data->flashchip_contents);
free(data);
return 1;
}
} else {
msg_pdbg("doesn't match.\n");
}
}
dummy_init_out:
if (register_shutdown(dummy_shutdown, data)) {
free(data->emu_persistent_image);
free(data->flashchip_contents);
free(data);
return 1;
}
if (dummy_buses_supported & BUS_NONSPI)
ret |= register_par_master(&par_master_dummyflasher,
dummy_buses_supported & BUS_NONSPI,
0, data);
if (dummy_buses_supported & BUS_SPI)
ret |= register_spi_master(&spi_master_dummyflasher, 0, data);
return ret;
}
static void *dummy_map(const char *descr, uintptr_t phys_addr, size_t len)
{
msg_pspew("%s: Mapping %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n",
__func__, descr, len, PRIxPTR_WIDTH, phys_addr);
return (void *)phys_addr;
}
static void dummy_unmap(void *virt_addr, size_t len)
{
msg_pspew("%s: Unmapping 0x%zx bytes at %p\n", __func__, len, virt_addr);
}
static void dummy_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", val=0x%02x\n", __func__, addr, val);
}
static void dummy_chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", val=0x%04x\n", __func__, addr, val);
}
static void dummy_chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", val=0x%08x\n", __func__, addr, val);
}
static void dummy_chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len)
{
size_t i;
msg_pspew("%s: addr=0x%" PRIxPTR ", len=0x%zx, writing data (hex):", __func__, addr, len);
for (i = 0; i < len; i++) {
if ((i % 16) == 0)
msg_pspew("\n");
msg_pspew("%02x ", buf[i]);
}
}
static uint8_t dummy_chip_readb(const struct flashctx *flash, const chipaddr addr)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", returning 0xff\n", __func__, addr);
return 0xff;
}
static uint16_t dummy_chip_readw(const struct flashctx *flash, const chipaddr addr)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", returning 0xffff\n", __func__, addr);
return 0xffff;
}
static uint32_t dummy_chip_readl(const struct flashctx *flash, const chipaddr addr)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", returning 0xffffffff\n", __func__, addr);
return 0xffffffff;
}
static void dummy_chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len)
{
msg_pspew("%s: addr=0x%" PRIxPTR ", len=0x%zx, returning array of 0xff\n", __func__, addr, len);
memset(buf, 0xff, len);
return;
}
static uint8_t get_reg_ro_bit_mask(const struct emu_data *data, enum flash_reg reg)
{
/* Whoever adds a new register must not forget to update this function
or at least shouldn't use it incorrectly. */
assert(reg == STATUS1 || reg == STATUS2 || reg == STATUS3);
uint8_t ro_bits = reg == STATUS1 ? SPI_SR_WIP : 0;
if (data->emu_chip == EMULATE_WINBOND_W25Q128FV) {
const bool srp0 = (data->emu_status[0] >> 7);
const bool srp1 = (data->emu_status[1] & 1);
const bool wp_active = (srp1 || (srp0 && data->hwwp));
if (wp_active) {
ro_bits = 0xff;
} else if (reg == STATUS2) {
/* SUS (bit_7) and (R) (bit_2). */
ro_bits = 0x84;
/* Once any of the lock bits (LB[1..3]) are set, they
can't be unset. */
ro_bits |= data->emu_status[1] & (1 << 3);
ro_bits |= data->emu_status[1] & (1 << 4);
ro_bits |= data->emu_status[1] & (1 << 5);
} else if (reg == STATUS3) {
/* Four reserved bits. */
ro_bits = 0x1b;
}
}
if (data->emu_chip == EMULATE_SPANSION_S25FL128L) {
const bool srp0 = (data->emu_status[0] >> 7);
const bool srp1 = (data->emu_status[1] & 1);
const bool wp_active = (srp1 || (srp0 && data->hwwp));
if (wp_active) {
ro_bits = 0xff;
} else if (reg == STATUS2) {
/* SUS (bit_7) */
ro_bits = 0x80;
/* Once any of the lock bits (LB[0..3]) are set, they
can't be unset. */
ro_bits |= data->emu_status[1] & (1 << 2);
ro_bits |= data->emu_status[1] & (1 << 3);
ro_bits |= data->emu_status[1] & (1 << 4);
ro_bits |= data->emu_status[1] & (1 << 5);
} else if (reg == STATUS3) {
/* Two reserved bits. */
ro_bits = 0x11;
}
}
return ro_bits;
}
static void update_write_protection(struct emu_data *data)
{
if (data->emu_chip != EMULATE_WINBOND_W25Q128FV &&
data->emu_chip != EMULATE_SPANSION_S25FL128L)
return;
const struct wp_bits bits = {
.srp = data->emu_status[0] >> 7,
.srl = data->emu_status[1] & 1,
.bp_bit_count = 3,
.bp =
{
(data->emu_status[0] >> 2) & 1,
(data->emu_status[0] >> 3) & 1,
(data->emu_status[0] >> 4) & 1
},
.tb_bit_present = true,
.tb = (data->emu_status[0] >> 5) & 1,
.sec_bit_present = true,
.sec = (data->emu_status[0] >> 6) & 1,
.cmp_bit_present = true,
.cmp = (data->emu_status[1] >> 6) & 1,
};
size_t start;
size_t len;
decode_range_spi25(&start, &len, &bits, data->emu_chip_size);
data->wp_start = start;
data->wp_end = start + len;
}
/* Checks whether range intersects a write-protected area of the flash if one is
* defined. */
static bool is_write_protected(const struct emu_data *data, uint32_t start, uint32_t len)
{
if (len == 0)
return false;
const uint32_t last = start + len - 1;
return (start < data->wp_end && last >= data->wp_start);
}
/* Returns non-zero on error. */
static int write_flash_data(struct emu_data *data, uint32_t start, uint32_t len, const uint8_t *buf)
{
if (is_write_protected(data, start, len)) {
msg_perr("At least part of the write range is write protected!\n");
return 1;
}
memcpy(data->flashchip_contents + start, buf, len);
data->emu_modified = true;
return 0;
}
/* Returns non-zero on error. */
static int erase_flash_data(struct emu_data *data, uint32_t start, uint32_t len)
{
if (is_write_protected(data, start, len)) {
msg_perr("At least part of the erase range is write protected!\n");
return 1;
}
memset(data->flashchip_contents + start, 0xff, len);
data->emu_modified = true;
return 0;
}
static int emulate_spi_chip_response(unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr,
struct emu_data *data)
{
unsigned int offs, i, toread;
uint8_t ro_bits;
bool wrsr_ext2, wrsr_ext3;
static int unsigned aai_offs;
const unsigned char sst25vf040_rems_response[2] = {0xbf, 0x44};
const unsigned char sst25vf032b_rems_response[2] = {0xbf, 0x4a};
const unsigned char mx25l6436_rems_response[2] = {0xc2, 0x16};
const unsigned char w25q128fv_rems_response[2] = {0xef, 0x17};
if (writecnt == 0) {
msg_perr("No command sent to the chip!\n");
return 1;
}
/* spi_blacklist has precedence over spi_ignorelist. */
for (i = 0; i < data->spi_blacklist_size; i++) {
if (writearr[0] == data->spi_blacklist[i]) {
msg_pdbg("Refusing blacklisted SPI command 0x%02x\n",
data->spi_blacklist[i]);
return SPI_INVALID_OPCODE;
}
}
for (i = 0; i < data->spi_ignorelist_size; i++) {
if (writearr[0] == data->spi_ignorelist[i]) {
msg_cdbg("Ignoring ignorelisted SPI command 0x%02x\n",
data->spi_ignorelist[i]);
/* Return success because the command does not fail,
* it is simply ignored.
*/
return 0;
}
}
if (data->emu_max_aai_size && (data->emu_status[0] & SPI_SR_AAI)) {
if (writearr[0] != JEDEC_AAI_WORD_PROGRAM &&
writearr[0] != JEDEC_WRDI &&
writearr[0] != JEDEC_RDSR) {
msg_perr("Forbidden opcode (0x%02x) attempted during "
"AAI sequence!\n", writearr[0]);
return 0;
}
}
switch (writearr[0]) {
case JEDEC_RES:
if (writecnt < JEDEC_RES_OUTSIZE)
break;
/* offs calculation is only needed for SST chips which treat RES like REMS. */
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
offs += writecnt - JEDEC_REMS_OUTSIZE;
switch (data->emu_chip) {
case EMULATE_ST_M25P10_RES:
if (readcnt > 0)
memset(readarr, 0x10, readcnt);
break;
case EMULATE_SST_SST25VF040_REMS:
for (i = 0; i < readcnt; i++)
readarr[i] = sst25vf040_rems_response[(offs + i) % 2];
break;
case EMULATE_SST_SST25VF032B:
for (i = 0; i < readcnt; i++)
readarr[i] = sst25vf032b_rems_response[(offs + i) % 2];
break;
case EMULATE_MACRONIX_MX25L6436:
if (readcnt > 0)
memset(readarr, 0x16, readcnt);
break;
case EMULATE_WINBOND_W25Q128FV:
if (readcnt > 0)
memset(readarr, 0x17, readcnt);
break;
case EMULATE_SPANSION_S25FL128L:
if (readcnt > 0)
readarr[0] = 0x60;
if (readcnt > 1)
readarr[1] = 0x18;
break;
default: /* ignore */
break;
}
break;
case JEDEC_REMS:
/* REMS response has wraparound and uses an address parameter. */
if (writecnt < JEDEC_REMS_OUTSIZE)
break;
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
offs += writecnt - JEDEC_REMS_OUTSIZE;
switch (data->emu_chip) {
case EMULATE_SST_SST25VF040_REMS:
for (i = 0; i < readcnt; i++)
readarr[i] = sst25vf040_rems_response[(offs + i) % 2];
break;
case EMULATE_SST_SST25VF032B:
for (i = 0; i < readcnt; i++)
readarr[i] = sst25vf032b_rems_response[(offs + i) % 2];
break;
case EMULATE_MACRONIX_MX25L6436:
for (i = 0; i < readcnt; i++)
readarr[i] = mx25l6436_rems_response[(offs + i) % 2];
break;
case EMULATE_WINBOND_W25Q128FV:
for (i = 0; i < readcnt; i++)
readarr[i] = w25q128fv_rems_response[(offs + i) % 2];
break;
default: /* ignore */
break;
}
break;
case JEDEC_RDID:
switch (data->emu_chip) {
case EMULATE_SST_SST25VF032B:
if (readcnt > 0)
readarr[0] = 0xbf;
if (readcnt > 1)
readarr[1] = 0x25;
if (readcnt > 2)
readarr[2] = 0x4a;
break;
case EMULATE_MACRONIX_MX25L6436:
if (readcnt > 0)
readarr[0] = 0xc2;
if (readcnt > 1)
readarr[1] = 0x20;
if (readcnt > 2)
readarr[2] = 0x17;
break;
case EMULATE_WINBOND_W25Q128FV:
if (readcnt > 0)
readarr[0] = 0xef;
if (readcnt > 1)
readarr[1] = 0x40;
if (readcnt > 2)
readarr[2] = 0x18;
break;
case EMULATE_SPANSION_S25FL128L:
if (readcnt > 0)
readarr[0] = 0x01;
if (readcnt > 1)
readarr[1] = 0x60;
if (readcnt > 2)
readarr[2] = 0x18;
break;
default: /* ignore */
break;
}
break;
case JEDEC_RDSR:
memset(readarr, data->emu_status[0], readcnt);
break;
case JEDEC_RDSR2:
if (data->emu_status_len >= 2)
memset(readarr, data->emu_status[1], readcnt);
break;
case JEDEC_RDSR3:
if (data->emu_status_len >= 3)
memset(readarr, data->emu_status[2], readcnt);
break;
/* FIXME: this should be chip-specific. */
case JEDEC_EWSR:
case JEDEC_WREN:
data->emu_status[0] |= SPI_SR_WEL;
break;
case JEDEC_WRSR:
if (!(data->emu_status[0] & SPI_SR_WEL)) {
msg_perr("WRSR attempted, but WEL is 0!\n");
break;
}
wrsr_ext2 = (writecnt == 3 && data->emu_wrsr_ext2);
wrsr_ext3 = (writecnt == 4 && data->emu_wrsr_ext3);
/* FIXME: add some reasonable simulation of the busy flag */
ro_bits = get_reg_ro_bit_mask(data, STATUS1);
data->emu_status[0] &= ro_bits;
data->emu_status[0] |= writearr[1] & ~ro_bits;
if (wrsr_ext2 || wrsr_ext3) {
ro_bits = get_reg_ro_bit_mask(data, STATUS2);
data->emu_status[1] &= ro_bits;
data->emu_status[1] |= writearr[2] & ~ro_bits;
}
if (wrsr_ext3) {
ro_bits = get_reg_ro_bit_mask(data, STATUS3);
data->emu_status[2] &= ro_bits;
data->emu_status[2] |= writearr[3] & ~ro_bits;
}
if (wrsr_ext3)
msg_pdbg2("WRSR wrote 0x%02x%02x%02x.\n", data->emu_status[2], data->emu_status[1], data->emu_status[0]);
else if (wrsr_ext2)
msg_pdbg2("WRSR wrote 0x%02x%02x.\n", data->emu_status[1], data->emu_status[0]);
else
msg_pdbg2("WRSR wrote 0x%02x.\n", data->emu_status[0]);
update_write_protection(data);
break;
case JEDEC_WRSR2:
if (data->emu_status_len < 2)
break;
if (!(data->emu_status[0] & SPI_SR_WEL)) {
msg_perr("WRSR2 attempted, but WEL is 0!\n");
break;
}
ro_bits = get_reg_ro_bit_mask(data, STATUS2);
data->emu_status[1] &= ro_bits;
data->emu_status[1] |= (writearr[1] & ~ro_bits);
msg_pdbg2("WRSR2 wrote 0x%02x.\n", data->emu_status[1]);
update_write_protection(data);
break;
case JEDEC_WRSR3:
if (data->emu_status_len < 3)
break;
if (!(data->emu_status[0] & SPI_SR_WEL)) {
msg_perr("WRSR3 attempted, but WEL is 0!\n");
break;
}
ro_bits = get_reg_ro_bit_mask(data, STATUS3);
data->emu_status[2] &= ro_bits;
data->emu_status[2] |= (writearr[1] & ~ro_bits);
msg_pdbg2("WRSR3 wrote 0x%02x.\n", data->emu_status[2]);
break;
case JEDEC_READ:
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
/* Truncate to emu_chip_size. */
offs %= data->emu_chip_size;
if (readcnt > 0)
memcpy(readarr, data->flashchip_contents + offs, readcnt);
break;
case JEDEC_BYTE_PROGRAM:
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
/* Truncate to emu_chip_size. */
offs %= data->emu_chip_size;
if (writecnt < 5) {
msg_perr("BYTE PROGRAM size too short!\n");
return 1;
}
if (writecnt - 4 > data->emu_max_byteprogram_size) {
msg_perr("Max BYTE PROGRAM size exceeded!\n");
return 1;
}
if (write_flash_data(data, offs, writecnt - 4, writearr + 4)) {
msg_perr("Failed to program flash!\n");
return 1;
}
break;
case JEDEC_AAI_WORD_PROGRAM:
if (!data->emu_max_aai_size)
break;
if (!(data->emu_status[0] & SPI_SR_AAI)) {
if (writecnt < JEDEC_AAI_WORD_PROGRAM_OUTSIZE) {
msg_perr("Initial AAI WORD PROGRAM size too "
"short!\n");
return 1;
}
if (writecnt > JEDEC_AAI_WORD_PROGRAM_OUTSIZE) {
msg_perr("Initial AAI WORD PROGRAM size too "
"long!\n");
return 1;
}
data->emu_status[0] |= SPI_SR_AAI;
aai_offs = writearr[1] << 16 | writearr[2] << 8 |
writearr[3];
/* Truncate to emu_chip_size. */
aai_offs %= data->emu_chip_size;
if (write_flash_data(data, aai_offs, 2, writearr + 4)) {
msg_perr("Failed to program flash!\n");
return 1;
}
aai_offs += 2;
} else {
if (writecnt < JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE) {
msg_perr("Continuation AAI WORD PROGRAM size "
"too short!\n");
return 1;
}
if (writecnt > JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE) {
msg_perr("Continuation AAI WORD PROGRAM size "
"too long!\n");
return 1;
}
if (write_flash_data(data, aai_offs, 2, writearr + 1)) {
msg_perr("Failed to program flash!\n");
return 1;
}
aai_offs += 2;
}
break;
case JEDEC_WRDI:
if (data->emu_max_aai_size)
data->emu_status[0] &= ~SPI_SR_AAI;
break;
case JEDEC_SE:
if (!data->emu_jedec_se_size)
break;
if (writecnt != JEDEC_SE_OUTSIZE) {
msg_perr("SECTOR ERASE 0x20 outsize invalid!\n");
return 1;
}
if (readcnt != JEDEC_SE_INSIZE) {
msg_perr("SECTOR ERASE 0x20 insize invalid!\n");
return 1;
}
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
if (offs & (data->emu_jedec_se_size - 1))
msg_pdbg("Unaligned SECTOR ERASE 0x20: 0x%x\n", offs);
offs &= ~(data->emu_jedec_se_size - 1);
if (erase_flash_data(data, offs, data->emu_jedec_se_size)) {
msg_perr("Failed to erase flash!\n");
return 1;
}
break;
case JEDEC_BE_52:
if (!data->emu_jedec_be_52_size)
break;
if (writecnt != JEDEC_BE_52_OUTSIZE) {
msg_perr("BLOCK ERASE 0x52 outsize invalid!\n");
return 1;
}
if (readcnt != JEDEC_BE_52_INSIZE) {
msg_perr("BLOCK ERASE 0x52 insize invalid!\n");
return 1;
}
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
if (offs & (data->emu_jedec_be_52_size - 1))
msg_pdbg("Unaligned BLOCK ERASE 0x52: 0x%x\n", offs);
offs &= ~(data->emu_jedec_be_52_size - 1);
if (erase_flash_data(data, offs, data->emu_jedec_be_52_size)) {
msg_perr("Failed to erase flash!\n");
return 1;
}
break;
case JEDEC_BE_D8:
if (!data->emu_jedec_be_d8_size)
break;
if (writecnt != JEDEC_BE_D8_OUTSIZE) {
msg_perr("BLOCK ERASE 0xd8 outsize invalid!\n");
return 1;
}
if (readcnt != JEDEC_BE_D8_INSIZE) {
msg_perr("BLOCK ERASE 0xd8 insize invalid!\n");
return 1;
}
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
if (offs & (data->emu_jedec_be_d8_size - 1))
msg_pdbg("Unaligned BLOCK ERASE 0xd8: 0x%x\n", offs);
offs &= ~(data->emu_jedec_be_d8_size - 1);
if (erase_flash_data(data, offs, data->emu_jedec_be_d8_size)) {
msg_perr("Failed to erase flash!\n");
return 1;
}
break;
case JEDEC_CE_60:
if (!data->emu_jedec_ce_60_size)
break;
if (writecnt != JEDEC_CE_60_OUTSIZE) {
msg_perr("CHIP ERASE 0x60 outsize invalid!\n");
return 1;
}
if (readcnt != JEDEC_CE_60_INSIZE) {
msg_perr("CHIP ERASE 0x60 insize invalid!\n");
return 1;
}
/* JEDEC_CE_60_OUTSIZE is 1 (no address) -> no offset. */
/* emu_jedec_ce_60_size is emu_chip_size. */
if (erase_flash_data(data, 0, data->emu_jedec_ce_60_size)) {
msg_perr("Failed to erase flash!\n");
return 1;
}
break;
case JEDEC_CE_C7:
if (!data->emu_jedec_ce_c7_size)
break;
if (writecnt != JEDEC_CE_C7_OUTSIZE) {
msg_perr("CHIP ERASE 0xc7 outsize invalid!\n");
return 1;
}
if (readcnt != JEDEC_CE_C7_INSIZE) {
msg_perr("CHIP ERASE 0xc7 insize invalid!\n");
return 1;
}
/* JEDEC_CE_C7_OUTSIZE is 1 (no address) -> no offset. */
/* emu_jedec_ce_c7_size is emu_chip_size. */
if (erase_flash_data(data, 0, data->emu_jedec_ce_c7_size)) {
msg_perr("Failed to erase flash!\n");
return 1;
}
break;
case JEDEC_SFDP:
if (data->emu_chip != EMULATE_MACRONIX_MX25L6436)
break;
if (writecnt < 4)
break;
offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
/* SFDP expects one dummy byte after the address. */
if (writecnt == 4) {
/* The dummy byte was not written, make sure it is read instead.
* Shifting and shortening the read array does achieve this goal.
*/
readarr++;
readcnt--;
} else {
/* The response is shifted if more than 5 bytes are written, because SFDP data is
* already shifted out by the chip while those superfluous bytes are written. */
offs += writecnt - 5;
}
/* The SFDP spec implies that the start address of an SFDP read may be truncated to fit in the
* SFDP table address space, i.e. the start address may be wrapped around at SFDP table size.
* This is a reasonable implementation choice in hardware because it saves a few gates. */
if (offs >= sizeof(sfdp_table)) {
msg_pdbg("Wrapping the start address around the SFDP table boundary (using 0x%x "
"instead of 0x%x).\n", (unsigned int)(offs % sizeof(sfdp_table)), offs);
offs %= sizeof(sfdp_table);
}
toread = min(sizeof(sfdp_table) - offs, readcnt);
memcpy(readarr, sfdp_table + offs, toread);
if (toread < readcnt)
msg_pdbg("Crossing the SFDP table boundary in a single "
"continuous chunk produces undefined results "
"after that point.\n");
break;
default:
/* No special response. */
break;
}
if (writearr[0] != JEDEC_WREN && writearr[0] != JEDEC_EWSR)
data->emu_status[0] &= ~SPI_SR_WEL;
return 0;
}
static int dummy_spi_send_command(const struct flashctx *flash, unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
unsigned int i;
struct emu_data *emu_data = flash->mst.spi->data;
if (!emu_data) {
msg_perr("No data in flash context!\n");
return 1;
}
msg_pspew("%s:", __func__);
msg_pspew(" writing %u bytes:", writecnt);
for (i = 0; i < writecnt; i++)
msg_pspew(" 0x%02x", writearr[i]);
/* Response for unknown commands and missing chip is 0xff. */
memset(readarr, 0xff, readcnt);
switch (emu_data->emu_chip) {
case EMULATE_ST_M25P10_RES:
case EMULATE_SST_SST25VF040_REMS:
case EMULATE_SST_SST25VF032B:
case EMULATE_MACRONIX_MX25L6436:
case EMULATE_WINBOND_W25Q128FV:
case EMULATE_SPANSION_S25FL128L:
if (emulate_spi_chip_response(writecnt, readcnt, writearr,
readarr, emu_data)) {
msg_pdbg("Invalid command sent to flash chip!\n");
return 1;
}
break;
default:
break;
}
msg_pspew(" reading %u bytes:", readcnt);
for (i = 0; i < readcnt; i++)
msg_pspew(" 0x%02x", readarr[i]);
msg_pspew("\n");
return 0;
}
static int dummy_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
const struct emu_data *const data = flash->mst.spi->data;
return spi_write_chunked(flash, buf, start, len, data->spi_write_256_chunksize);
}
static bool dummy_spi_probe_opcode(const struct flashctx *flash, uint8_t opcode)
{
size_t i;
const struct emu_data *emu_data = flash->mst.spi->data;
for (i = 0; i < emu_data->spi_blacklist_size; i++) {
if (emu_data->spi_blacklist[i] == opcode)
return false;
}
return true;
}
const struct programmer_entry programmer_dummy = {
.name = "dummy",
.type = OTHER,
/* FIXME */
.devs.note = "Dummy device, does nothing and logs all accesses\n",
.init = dummy_init,
};