blob: 625728e87eeda30a6961a6e61e56397512e5559f [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2010 Carl-Daniel Hailfinger
* Copyright (C) 2015 Simon Glass
* Copyright (C) 2015 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include <libusb.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
#include "spi_command.h"
/* LIBUSB_CALL ensures the right calling conventions on libusb callbacks.
* However, the macro is not defined everywhere. m(
*/
#ifndef LIBUSB_CALL
#define LIBUSB_CALL
#endif
#define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z)
#define DEFAULT_TIMEOUT 3000
#define MAX_BLOCK_COUNT 65535
#define MAX_CMD_SIZE 15
#define DEDIPROG_ASYNC_TRANSFERS 8 /* at most 8 asynchronous transfers */
#define REQTYPE_OTHER_OUT (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_OTHER) /* 0x43 */
#define REQTYPE_OTHER_IN (LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_OTHER) /* 0xC3 */
#define REQTYPE_EP_OUT (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT) /* 0x42 */
#define REQTYPE_EP_IN (LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT) /* 0xC2 */
enum dediprog_devtype {
DEV_UNKNOWN = 0,
DEV_SF100 = 100,
DEV_SF200 = 200,
DEV_SF600 = 600,
DEV_SF600PG2 = 600+2,
DEV_SF700 = 700,
};
enum dediprog_leds {
LED_INVALID = -1,
LED_NONE = 0,
LED_PASS = 1 << 0,
LED_BUSY = 1 << 1,
LED_ERROR = 1 << 2,
LED_ALL = 7,
};
/* IO bits for CMD_SET_IO_LED message */
enum dediprog_ios {
IO1 = 1 << 0,
IO2 = 1 << 1,
IO3 = 1 << 2,
IO4 = 1 << 3,
};
enum dediprog_cmds {
CMD_TRANSCEIVE = 0x01,
CMD_POLL_STATUS_REG = 0x02,
CMD_SET_VPP = 0x03,
CMD_SET_TARGET = 0x04,
CMD_READ_EEPROM = 0x05,
CMD_WRITE_EEPROM = 0x06,
CMD_SET_IO_LED = 0x07,
CMD_READ_PROG_INFO = 0x08,
CMD_SET_VCC = 0x09,
CMD_SET_STANDALONE = 0x0A,
CMD_SET_VOLTAGE = 0x0B, /* Only in firmware older than 6.0.0 */
CMD_GET_BUTTON = 0x11,
CMD_GET_UID = 0x12,
CMD_SET_CS = 0x14,
CMD_IO_MODE = 0x15,
CMD_FW_UPDATE = 0x1A,
CMD_FPGA_UPDATE = 0x1B,
CMD_READ_FPGA_VERSION = 0x1C,
CMD_SET_HOLD = 0x1D,
CMD_READ = 0x20,
CMD_WRITE = 0x30,
CMD_WRITE_AT45DB = 0x31,
CMD_NAND_WRITE = 0x32,
CMD_NAND_READ = 0x33,
CMD_SET_SPI_CLK = 0x61,
CMD_CHECK_SOCKET = 0x62,
CMD_DOWNLOAD_PRJ = 0x63,
CMD_READ_PRJ_NAME = 0x64,
// New protocol/firmware only
CMD_CHECK_SDCARD = 0x65,
CMD_READ_PRJ = 0x66,
};
enum dediprog_target {
FLASH_TYPE_APPLICATION_FLASH_1 = 0,
FLASH_TYPE_FLASH_CARD,
FLASH_TYPE_APPLICATION_FLASH_2,
FLASH_TYPE_SOCKET,
};
enum dediprog_readmode {
READ_MODE_STD = 1,
READ_MODE_FAST = 2,
READ_MODE_ATMEL45 = 3,
READ_MODE_4B_ADDR_FAST = 4,
READ_MODE_4B_ADDR_FAST_0x0C = 5, /* New protocol only */
READ_MODE_CONFIGURABLE = 9, /* Not seen documented so far */
};
enum dediprog_writemode {
WRITE_MODE_PAGE_PGM = 1,
WRITE_MODE_PAGE_WRITE = 2,
WRITE_MODE_1B_AAI = 3,
WRITE_MODE_2B_AAI = 4,
WRITE_MODE_128B_PAGE = 5,
WRITE_MODE_PAGE_AT26DF041 = 6,
WRITE_MODE_SILICON_BLUE_FPGA = 7,
WRITE_MODE_64B_PAGE_NUMONYX_PCM = 8, /* unit of 512 bytes */
WRITE_MODE_4B_ADDR_256B_PAGE_PGM = 9,
WRITE_MODE_32B_PAGE_PGM_MXIC_512K = 10, /* unit of 512 bytes */
WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12 = 11,
WRITE_MODE_4B_ADDR_256B_PAGE_PGM_FLAGS = 12,
};
enum dediprog_standalone_mode {
ENTER_STANDALONE_MODE = 0,
LEAVE_STANDALONE_MODE = 1,
};
/*
* These are not official designations; they are for use in flashprog only.
* Order must be preserved so that comparison operators work.
*/
enum protocol {
PROTOCOL_UNKNOWN,
PROTOCOL_V1,
PROTOCOL_V2,
PROTOCOL_V3,
};
static const struct dev_entry devs_dediprog[] = {
{0x0483, 0xDADA, OK, "Dediprog", "SF100/SF200/SF600"},
{0},
};
struct dediprog_data {
struct libusb_context *usb_ctx;
libusb_device_handle *handle;
int in_endpoint;
int out_endpoint;
int firmwareversion;
char devicestring[32+1];
enum dediprog_devtype devicetype;
int (*prepare_rw_cmd)(
struct flashctx *, uint8_t cmd_buf[MAX_CMD_SIZE], uint16_t *value, uint16_t *idx,
bool is_read, uint8_t dp_spi_cmd, unsigned int start, unsigned int block_count);
enum io_mode io_mode;
};
#if defined(LIBUSB_MAJOR) && defined(LIBUSB_MINOR) && defined(LIBUSB_MICRO) && \
LIBUSB_MAJOR <= 1 && LIBUSB_MINOR == 0 && LIBUSB_MICRO < 9
/* Quick and dirty replacement for missing libusb_error_name in libusb < 1.0.9 */
const char * LIBUSB_CALL libusb_error_name(int error_code)
{
if (error_code >= INT16_MIN && error_code <= INT16_MAX) {
/* 18 chars for text, rest for number (16 b should be enough), sign, nullbyte. */
static char my_libusb_error[18 + 5 + 2];
sprintf(my_libusb_error, "libusb error code %i", error_code);
return my_libusb_error;
} else {
return "UNKNOWN";
}
}
#endif
static enum protocol protocol(const struct dediprog_data *dp_data)
{
/* Firmware version < 5.0.0 is handled explicitly in some cases. */
switch (dp_data->devicetype) {
case DEV_SF100:
case DEV_SF200:
if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 5, 0))
return PROTOCOL_V1;
else
return PROTOCOL_V2;
case DEV_SF600:
if (dp_data->firmwareversion < FIRMWARE_VERSION(6, 9, 0))
return PROTOCOL_V1;
else if (dp_data->firmwareversion <= FIRMWARE_VERSION(7, 2, 21))
return PROTOCOL_V2;
else
return PROTOCOL_V3;
case DEV_SF700:
case DEV_SF600PG2:
return PROTOCOL_V3;
default:
return PROTOCOL_UNKNOWN;
}
}
struct dediprog_transfer_status {
struct flashctx *flash;
int error; /* OK if 0, ERROR else */
unsigned int queued_idx;
unsigned int finished_idx;
};
static void LIBUSB_CALL dediprog_bulk_read_cb(struct libusb_transfer *const transfer)
{
struct dediprog_transfer_status *const status = (struct dediprog_transfer_status *)transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
status->error = 1;
msg_perr("SPI bulk read failed!\n");
}
flashprog_progress_add(status->flash, transfer->actual_length);
++status->finished_idx;
}
static int dediprog_bulk_read_poll(struct libusb_context *usb_ctx,
const struct dediprog_transfer_status *const status,
const int finish)
{
if (status->finished_idx >= status->queued_idx)
return 0;
do {
struct timeval timeout = { 10, 0 };
const int ret = libusb_handle_events_timeout(usb_ctx, &timeout);
if (ret < 0) {
msg_perr("Polling read events failed: %i %s!\n", ret, libusb_error_name(ret));
return 1;
}
} while (finish && (status->finished_idx < status->queued_idx));
return 0;
}
static int dediprog_read(libusb_device_handle *dediprog_handle,
enum dediprog_cmds cmd, unsigned int value, unsigned int idx,
uint8_t *bytes, size_t size)
{
return libusb_control_transfer(dediprog_handle, REQTYPE_EP_IN, cmd, value, idx,
(unsigned char *)bytes, size, DEFAULT_TIMEOUT);
}
static int dediprog_write(libusb_device_handle *dediprog_handle,
enum dediprog_cmds cmd, unsigned int value, unsigned int idx,
const uint8_t *bytes, size_t size)
{
return libusb_control_transfer(dediprog_handle, REQTYPE_EP_OUT, cmd, value, idx,
(unsigned char *)bytes, size, DEFAULT_TIMEOUT);
}
/* This function sets the GPIOs connected to the LEDs as well as IO1-IO4. */
static int dediprog_set_leds(int leds, const struct dediprog_data *dp_data)
{
if (leds < LED_NONE || leds > LED_ALL)
leds = LED_ALL;
/* Older Dediprogs with 2.x.x and 3.x.x firmware only had two LEDs, assigned to different bits. So map
* them around if we have an old device. On those devices the LEDs map as follows:
* bit 2 == 0: green light is on.
* bit 0 == 0: red light is on.
*
* Additionally, the command structure has changed with the "new" protocol.
*
* FIXME: take IO pins into account
*/
int target_leds, ret;
if (protocol(dp_data) >= PROTOCOL_V2) {
target_leds = (leds ^ 7) << 8;
ret = dediprog_write(dp_data->handle, CMD_SET_IO_LED, target_leds, 0, NULL, 0);
} else {
if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 0, 0)) {
target_leds = ((leds & LED_ERROR) >> 2) | ((leds & LED_PASS) << 2);
} else {
target_leds = leds;
}
target_leds ^= 7;
ret = dediprog_write(dp_data->handle, CMD_SET_IO_LED, 0x9, target_leds, NULL, 0);
}
if (ret != 0x0) {
msg_perr("Command Set LED 0x%x failed (%s)!\n", leds, libusb_error_name(ret));
return 1;
}
return 0;
}
static int dediprog_set_spi_voltage(libusb_device_handle *dediprog_handle, int millivolt)
{
int ret;
uint16_t voltage_selector;
switch (millivolt) {
case 0:
/* Admittedly this one is an assumption. */
voltage_selector = 0x0;
break;
case 1800:
voltage_selector = 0x12;
break;
case 2500:
voltage_selector = 0x11;
break;
case 3500:
voltage_selector = 0x10;
break;
default:
msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt);
return 1;
}
msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000,
millivolt % 1000);
if (voltage_selector == 0) {
/* Wait some time as the original driver does. */
programmer_delay(200 * 1000);
}
ret = dediprog_write(dediprog_handle, CMD_SET_VCC, voltage_selector, 0, NULL, 0);
if (ret != 0x0) {
msg_perr("Command Set SPI Voltage 0x%x failed!\n",
voltage_selector);
return 1;
}
if (voltage_selector != 0) {
/* Wait some time as the original driver does. */
programmer_delay(200 * 1000);
}
return 0;
}
struct dediprog_spispeeds {
const char *const name;
const int speed;
};
static const struct dediprog_spispeeds spispeeds[] = {
{ "24M", 0x0 },
{ "12M", 0x2 },
{ "8M", 0x1 },
{ "3M", 0x3 },
{ "2.18M", 0x4 },
{ "1.5M", 0x5 },
{ "750k", 0x6 },
{ "375k", 0x7 },
{ NULL, 0x0 },
};
static int dediprog_set_spi_speed(unsigned int spispeed_idx, const struct dediprog_data *dp_data)
{
if (dp_data->devicetype < DEV_SF600PG2 && dp_data->firmwareversion < FIRMWARE_VERSION(5, 0, 0)) {
msg_pwarn("Skipping to set SPI speed because firmware is too old.\n");
return 0;
}
const struct dediprog_spispeeds *spispeed = &spispeeds[spispeed_idx];
msg_pdbg("SPI speed is %sHz\n", spispeed->name);
int ret = dediprog_write(dp_data->handle, CMD_SET_SPI_CLK, spispeed->speed, 0, NULL, 0);
if (ret != 0x0) {
msg_perr("Command Set SPI Speed 0x%x failed!\n", spispeed->speed);
return 1;
}
return 0;
}
static int dediprog_set_io_mode(struct dediprog_data *const dp, const enum io_mode io_mode)
{
const unsigned char dp_io_mode[] = {
[SINGLE_IO_1_1_1] = 0,
[DUAL_OUT_1_1_2] = 1,
[DUAL_IO_1_2_2] = 2,
[QUAD_OUT_1_1_4] = 3,
[QUAD_IO_1_4_4] = 4,
[QPI_4_4_4] = 5,
};
if (dp->devicetype < DEV_SF600)
return 0;
if (dp->io_mode == io_mode)
return 0;
if (io_mode >= ARRAY_SIZE(dp_io_mode)) {
msg_perr("%s: Unsupported I/O mode %d! "
"Please report a bug at flashprog@flashprog.org\n",
__func__, io_mode);
return 1;
}
const int ret = dediprog_write(dp->handle, CMD_IO_MODE, dp_io_mode[io_mode], 0, NULL, 0);
if (ret) {
msg_perr("Command I/O Mode 0x%x failed!\n", dp_io_mode[io_mode]);
return 1;
}
dp->io_mode = io_mode;
return 0;
}
static int prepare_rw_cmd_common(uint8_t cmd_buf[MAX_CMD_SIZE], uint8_t dp_spi_cmd, unsigned int count)
{
if (count > MAX_BLOCK_COUNT) {
msg_perr("%s: Unsupported transfer length of %u blocks!\n"
"Please report a bug at flashprog@flashprog.org\n",
__func__, count);
return -1;
}
/* First 5 bytes are common in all generations. */
cmd_buf[0] = count & 0xff;
cmd_buf[1] = (count >> 8) & 0xff;
cmd_buf[2] = 0; /* RFU */
cmd_buf[3] = dp_spi_cmd; /* Read/Write Mode (see enums dediprog_readmode / dediprog_writemode) */
cmd_buf[4] = 0; /* "Opcode". Specs imply necessity only for READ_MODE_4B_ADDR_FAST and
WRITE_MODE_4B_ADDR_256B_PAGE_PGM. */
return 5;
}
static int prepare_rw_cmd_v1(
struct flashctx *flash, uint8_t cmd_buf[MAX_CMD_SIZE], uint16_t *value, uint16_t *idx,
bool is_read, uint8_t dp_spi_cmd, unsigned int start, unsigned int block_count)
{
const int cmd_len = prepare_rw_cmd_common(cmd_buf, dp_spi_cmd, block_count);
if (cmd_len < 0)
return -1;
if (flash->chip->feature_bits & FEATURE_4BA_EAR_ANY) {
if (spi_set_extended_address(flash, start >> 24))
return -1;
} else if (start >> 24) {
msg_cerr("Can't handle 4-byte address with dediprog.\n");
return -1;
}
/*
* We don't know how the dediprog firmware handles 4-byte
* addresses. So let's not tell it what we are doing and
* only send the lower 3 bytes.
*/
*value = start & 0xffff;
*idx = (start >> 16) & 0xff;
return cmd_len;
}
static int prepare_rw_cmd_v2(
struct flashctx *flash, uint8_t cmd_buf[MAX_CMD_SIZE], uint16_t *value, uint16_t *idx,
bool is_read, uint8_t dp_spi_cmd, unsigned int start, unsigned int block_count)
{
struct dediprog_data *const dp = flash->mst.spi->data;
if (prepare_rw_cmd_common(cmd_buf, dp_spi_cmd, block_count) < 0)
return -1;
if (is_read) {
const struct spi_read_op *const read_op = get_spi_read_op(flash);
if (dediprog_set_io_mode(dp, read_op->io_mode))
return -1;
if (read_op->native_4ba)
cmd_buf[3] = READ_MODE_4B_ADDR_FAST_0x0C;
else if (read_op->opcode != JEDEC_READ)
cmd_buf[3] = READ_MODE_FAST;
if (read_op->opcode == JEDEC_READ_4BA)
cmd_buf[4] = JEDEC_FAST_READ_4BA;
else
cmd_buf[4] = read_op->opcode;
} else {
if (dediprog_set_io_mode(dp, SINGLE_IO_1_1_1))
return -1;
if (dp_spi_cmd == WRITE_MODE_PAGE_PGM
&& (flash->chip->feature_bits & FEATURE_4BA_WRITE)) {
cmd_buf[3] = WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12;
cmd_buf[4] = JEDEC_BYTE_PROGRAM_4BA;
}
}
cmd_buf[5] = 0; /* RFU */
cmd_buf[6] = (start >> 0) & 0xff;
cmd_buf[7] = (start >> 8) & 0xff;
cmd_buf[8] = (start >> 16) & 0xff;
cmd_buf[9] = (start >> 24) & 0xff;
return 10;
}
static int prepare_rw_cmd_v3(
struct flashctx *flash, uint8_t cmd_buf[MAX_CMD_SIZE], uint16_t *value, uint16_t *idx,
bool is_read, uint8_t dp_spi_cmd, unsigned int start, unsigned int block_count)
{
struct dediprog_data *const dp = flash->mst.spi->data;
if (prepare_rw_cmd_common(cmd_buf, dp_spi_cmd, block_count) < 0)
return -1;
cmd_buf[5] = 0; /* RFU */
cmd_buf[6] = (start >> 0) & 0xff;
cmd_buf[7] = (start >> 8) & 0xff;
cmd_buf[8] = (start >> 16) & 0xff;
cmd_buf[9] = (start >> 24) & 0xff;
if (is_read) {
const struct spi_read_op *const read_op = get_spi_read_op(flash);
if (dediprog_set_io_mode(dp, read_op->io_mode))
return -1;
cmd_buf[3] = READ_MODE_CONFIGURABLE;
cmd_buf[4] = read_op->opcode;
cmd_buf[10] = read_op->native_4ba || flash->in_4ba_mode ? 4 : 3;
cmd_buf[11] = spi_dummy_cycles(read_op) / 2;
return 12;
} else {
if (dediprog_set_io_mode(dp, SINGLE_IO_1_1_1))
return -1;
if (dp_spi_cmd == WRITE_MODE_PAGE_PGM) {
if (flash->chip->feature_bits & FEATURE_4BA_WRITE) {
cmd_buf[3] = WRITE_MODE_4B_ADDR_256B_PAGE_PGM;
cmd_buf[4] = JEDEC_BYTE_PROGRAM_4BA;
} else if (flash->in_4ba_mode) {
cmd_buf[3] = WRITE_MODE_4B_ADDR_256B_PAGE_PGM;
cmd_buf[4] = JEDEC_BYTE_PROGRAM;
} else if (flashprog_flash_getsize(flash) > 16*MiB) {
msg_cerr("Can't handle 4-byte address with dediprog.\n");
return -1;
}
}
/* 16 LSBs and 16 HSBs of page size */
/* FIXME: This assumes page size of 256. */
cmd_buf[10] = 0x00;
cmd_buf[11] = 0x01;
cmd_buf[12] = 0x00;
cmd_buf[13] = 0x00;
return 14;
}
}
/* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes.
* @start start address
* @len length
* @return 0 on success, 1 on failure
*/
static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
int err = 1;
const struct dediprog_data *dp_data = flash->mst.spi->data;
/* chunksize must be 512, other sizes will NOT work at all. */
const unsigned int chunksize = 512;
const unsigned int count = len / chunksize;
struct dediprog_transfer_status status = { flash, 0, 0, 0 };
struct libusb_transfer *transfers[DEDIPROG_ASYNC_TRANSFERS] = { NULL, };
struct libusb_transfer *transfer;
if (len == 0)
return 0;
if ((start % chunksize) || (len % chunksize)) {
msg_perr("%s: Unaligned start=%i, len=%i!\n"
"Please report a bug at flashprog@flashprog.org\n",
__func__, start, len);
return 1;
}
uint16_t value = 0, idx = 0;
uint8_t data_packet[MAX_CMD_SIZE];
const int command_packet_size = dp_data->prepare_rw_cmd(
flash, data_packet, &value, &idx, /* is_read => */true, READ_MODE_STD, start, count);
if (command_packet_size < 0)
return 1;
int ret = dediprog_write(dp_data->handle, CMD_READ, value, idx, data_packet, command_packet_size);
if (ret != command_packet_size) {
msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret, libusb_error_name(ret));
return 1;
}
/*
* Ring buffer of bulk transfers.
* Poll until at least one transfer is ready,
* schedule next transfers until buffer is full.
*/
/* Allocate bulk transfers. */
unsigned int i;
for (i = 0; i < MIN(DEDIPROG_ASYNC_TRANSFERS, count); ++i) {
transfers[i] = libusb_alloc_transfer(0);
if (!transfers[i]) {
msg_perr("Allocating libusb transfer %i failed: %s!\n", i, libusb_error_name(ret));
goto err_free;
}
}
/* Now transfer requested chunks using libusb's asynchronous interface. */
while (!status.error && (status.queued_idx < count)) {
while ((status.queued_idx < count) &&
(status.queued_idx - status.finished_idx) < DEDIPROG_ASYNC_TRANSFERS)
{
transfer = transfers[status.queued_idx % DEDIPROG_ASYNC_TRANSFERS];
libusb_fill_bulk_transfer(transfer, dp_data->handle, dp_data->in_endpoint,
(unsigned char *)buf + status.queued_idx * chunksize, chunksize,
dediprog_bulk_read_cb, &status, DEFAULT_TIMEOUT);
transfer->flags |= LIBUSB_TRANSFER_SHORT_NOT_OK;
ret = libusb_submit_transfer(transfer);
if (ret < 0) {
msg_perr("Submitting SPI bulk read %i failed: %s!\n",
status.queued_idx, libusb_error_name(ret));
goto err_free;
}
++status.queued_idx;
}
if (dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 0))
goto err_free;
}
/* Wait for transfers to finish. */
if (dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 1))
goto err_free;
/* Check if everything has been transmitted. */
if ((status.finished_idx < count) || status.error)
goto err_free;
err = 0;
err_free:
dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 1);
for (i = 0; i < DEDIPROG_ASYNC_TRANSFERS; ++i)
if (transfers[i]) libusb_free_transfer(transfers[i]);
return err;
}
static int dediprog_slow_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", start, len);
/* Override fast-read function for a moment: */
struct spi_read_op *const backup = flash->spi_fast_read;
flash->spi_fast_read = NULL;
const int ret = default_spi_read(flash, buf, start, len);
flash->spi_fast_read = backup;
return ret;
}
static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
int ret;
/* chunksize must be 512, other sizes will NOT work at all. */
const unsigned int chunksize = 0x200;
unsigned int residue = start % chunksize ? min(len, chunksize - start % chunksize) : 0;
unsigned int bulklen;
const struct dediprog_data *dp_data = flash->mst.spi->data;
dediprog_set_leds(LED_BUSY, dp_data);
if (residue) {
ret = dediprog_slow_read(flash, buf, start, residue);
if (ret)
goto err;
}
/* Round down. */
bulklen = (len - residue) / chunksize * chunksize;
ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue, bulklen);
if (ret)
goto err;
len -= residue + bulklen;
if (len != 0) {
ret = dediprog_slow_read(flash, buf + residue + bulklen,
start + residue + bulklen, len);
if (ret)
goto err;
}
dediprog_set_leds(LED_PASS, dp_data);
return 0;
err:
dediprog_set_leds(LED_ERROR, dp_data);
return ret;
}
/* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes.
* @chunksize length of data chunks, only 256 supported by now
* @start start address
* @len length
* @dedi_spi_cmd dediprog specific write command for spi bus
* @return 0 on success, 1 on failure
*/
static int dediprog_spi_bulk_write(struct flashctx *flash, const uint8_t *buf, unsigned int chunksize,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
/* USB transfer size must be 512, other sizes will NOT work at all.
* chunksize is the real data size per USB bulk transfer. The remaining
* space in a USB bulk transfer must be filled with 0xff padding.
*/
const unsigned int count = len / chunksize;
const struct dediprog_data *dp_data = flash->mst.spi->data;
/*
* We should change this check to
* chunksize > 512
* once we know how to handle different chunk sizes.
*/
if (chunksize != 256) {
msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n"
"Please report a bug at flashprog@flashprog.org\n",
__func__, chunksize);
return 1;
}
if ((start % chunksize) || (len % chunksize)) {
msg_perr("%s: Unaligned start=%i, len=%i!\n"
"Please report a bug at flashprog@flashprog.org\n",
__func__, start, len);
return 1;
}
/* No idea if the hardware can handle empty writes, so chicken out. */
if (len == 0)
return 0;
uint16_t value = 0, idx = 0;
uint8_t data_packet[MAX_CMD_SIZE];
const int command_packet_size = dp_data->prepare_rw_cmd(
flash, data_packet, &value, &idx, /* is_read => */false, dedi_spi_cmd, start, count);
if (command_packet_size < 0)
return 1;
int ret = dediprog_write(dp_data->handle, CMD_WRITE, value, idx, data_packet, command_packet_size);
if (ret != command_packet_size) {
msg_perr("Command Write SPI Bulk failed, %s!\n", libusb_error_name(ret));
return 1;
}
unsigned int i;
for (i = 0; i < count; i++) {
unsigned char usbbuf[512];
memcpy(usbbuf, buf + i * chunksize, chunksize);
memset(usbbuf + chunksize, 0xff, sizeof(usbbuf) - chunksize); // fill up with 0xFF
int transferred;
ret = libusb_bulk_transfer(dp_data->handle, dp_data->out_endpoint, usbbuf, 512, &transferred,
DEFAULT_TIMEOUT);
if ((ret < 0) || (transferred != 512)) {
msg_perr("SPI bulk write failed, expected %i, got %s!\n", 512, libusb_error_name(ret));
return 1;
}
flashprog_progress_add(flash, chunksize);
}
return 0;
}
static int dediprog_spi_write(struct flashctx *flash, const uint8_t *buf,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
int ret;
const unsigned int chunksize = flash->chip->page_size;
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
unsigned int bulklen;
const struct dediprog_data *dp_data = flash->mst.spi->data;
dediprog_set_leds(LED_BUSY, dp_data);
if (chunksize != 256) {
msg_pdbg("Page sizes other than 256 bytes are unsupported as "
"we don't know how dediprog\nhandles them.\n");
/* Write everything like it was residue. */
residue = len;
}
if (residue) {
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
start, residue);
/* No idea about the real limit. Maybe 16 including command and address, maybe more. */
ret = default_spi_write_256(flash, buf, start, residue);
if (ret) {
dediprog_set_leds(LED_ERROR, dp_data);
return ret;
}
}
/* Round down. */
bulklen = (len - residue) / chunksize * chunksize;
ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd);
if (ret) {
dediprog_set_leds(LED_ERROR, dp_data);
return ret;
}
len -= residue + bulklen;
if (len) {
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
start, len);
ret = default_spi_write_256(flash, buf + residue + bulklen, start + residue + bulklen, len);
if (ret) {
dediprog_set_leds(LED_ERROR, dp_data);
return ret;
}
}
dediprog_set_leds(LED_PASS, dp_data);
return 0;
}
static int dediprog_spi_write_chunked(struct flashctx *flash, const uint8_t *buf,
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
{
/* We can write only up to 65535 pages at once: */
while (len) {
const size_t len_here = MIN(len, flash->chip->page_size * MAX_BLOCK_COUNT);
const int ret = dediprog_spi_write(flash, buf, start, len_here, dedi_spi_cmd);
if (ret)
return ret;
start += len_here;
buf += len_here;
len -= len_here;
}
return 0;
}
static int dediprog_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
return dediprog_spi_write_chunked(flash, buf, start, len, WRITE_MODE_PAGE_PGM);
}
static int dediprog_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
return dediprog_spi_write_chunked(flash, buf, start, len, WRITE_MODE_2B_AAI);
}
static int dediprog_spi_send_command(const struct flashctx *flash,
unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
struct dediprog_data *const dp_data = flash->mst.spi->data;
int ret;
msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt);
if (writecnt > flash->mst.spi->max_data_write + 5) {
msg_perr("Invalid writecnt=%i, aborting.\n", writecnt);
return 1;
}
if (readcnt > flash->mst.spi->max_data_read) {
msg_perr("Invalid readcnt=%i, aborting.\n", readcnt);
return 1;
}
if (dediprog_set_io_mode(dp_data, SINGLE_IO_1_1_1))
return 1;
unsigned int idx, value;
/* New protocol has options and timeout combined as value while the old one used the value field for
* timeout and the index field for options. */
if (protocol(dp_data) >= PROTOCOL_V2) {
idx = 0;
value = readcnt ? 0x1 : 0x0; // Indicate if we require a read
} else {
idx = readcnt ? 0x1 : 0x0; // Indicate if we require a read
value = 0;
}
ret = dediprog_write(dp_data->handle, CMD_TRANSCEIVE, value, idx, writearr, writecnt);
if (ret != (int)writecnt) {
msg_perr("Send SPI failed, expected %i, got %i %s!\n",
writecnt, ret, libusb_error_name(ret));
return 1;
}
if (readcnt == 0) // If we don't require a response, we are done here
return 0;
/* The specifications do state the possibility to set a timeout for transceive transactions.
* Apparently the "timeout" is a delay, and you can use long delays to accelerate writing - in case you
* can predict the time needed by the previous command or so (untested). In any case, using this
* "feature" to set sane-looking timouts for the read below will completely trash performance with
* SF600 and/or firmwares >= 6.0 while they seem to be benign on SF100 with firmwares <= 5.5.2. *shrug*
*
* The specification also uses only 0 in its examples, so the lesson to learn here:
* "Never trust the description of an interface in the documentation but use the example code and pray."
const uint8_t read_timeout = 10 + readcnt/512;
if (protocol() >= PROTOCOL_V2) {
idx = 0;
value = min(read_timeout, 0xFF) | (0 << 8) ; // Timeout in lower byte, option in upper byte
} else {
idx = (0 & 0xFF); // Lower byte is option (0x01 = require SR, 0x02 keep CS low)
value = min(read_timeout, 0xFF); // Possibly two bytes but we play safe here
}
ret = dediprog_read(dp_data->dediprog_handle, CMD_TRANSCEIVE, value, idx, readarr, readcnt);
*/
ret = dediprog_read(dp_data->handle, CMD_TRANSCEIVE, 0, 0, readarr, readcnt);
if (ret != (int)readcnt) {
msg_perr("Receive SPI failed, expected %i, got %i %s!\n", readcnt, ret, libusb_error_name(ret));
return 1;
}
return 0;
}
static int dediprog_read_devicestring(struct dediprog_data *dp_data, bool warn)
{
const int devstr_len = sizeof(dp_data->devicestring) - 1, old_devstr_len = 16;
char *const buf = dp_data->devicestring;
int ret;
/* Command Receive Device String. */
ret = dediprog_read(dp_data->handle, CMD_READ_PROG_INFO, 0, 0, (uint8_t *)buf, devstr_len);
if (ret < old_devstr_len || ret > devstr_len) {
if (warn)
msg_perr("Incomplete/failed Command Receive Device String!\n");
return 1;
}
buf[ret] = '\0';
msg_pdbg("Found a %s\n", buf);
if (memcmp(buf, "SF100", 5) == 0)
dp_data->devicetype = DEV_SF100;
else if (memcmp(buf, "SF200", 5) == 0)
dp_data->devicetype = DEV_SF200;
else if (memcmp(buf, "SF600PG2", 8) == 0) /* match first, before shorter, generic SF600 */
dp_data->devicetype = DEV_SF600PG2;
else if (memcmp(buf, "SF600", 5) == 0)
dp_data->devicetype = DEV_SF600;
else if (memcmp(buf, "SF700", 5) == 0)
dp_data->devicetype = DEV_SF700;
else
return 1;
return 0;
}
static int dediprog_check_devicestring(struct dediprog_data *dp_data)
{
char *const buf = dp_data->devicestring;
unsigned int sfnum;
unsigned int fw[3];
if (sscanf(buf, "SF%u", &sfnum) != 1 ||
sfnum != dp_data->devicetype / 100 * 100 ||
sscanf(buf, "SF%*s V:%u.%u.%u ", &fw[0], &fw[1], &fw[2]) != 3) {
msg_perr("Unexpected firmware version string '%s'\n", buf);
return 1;
}
/* Only allow major versions that were tested. */
if ((dp_data->devicetype == DEV_SF600PG2 && fw[0] > 1) ||
(dp_data->devicetype == DEV_SF700 && fw[0] != 4) ||
(dp_data->devicetype <= DEV_SF600 && (fw[0] < 2 || fw[0] > 7))) {
msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0], fw[1], fw[2]);
return 1;
}
dp_data->firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]);
if (protocol(dp_data) == PROTOCOL_UNKNOWN) {
msg_perr("Internal error: Unable to determine protocol version.\n");
return 1;
}
return 0;
}
/*
* Read the id from the dediprog. This should return the numeric part of the
* serial number found on a sticker on the back of the dediprog. Note this
* number is stored in writable eeprom, so it could get out of sync.
* @return the id on success, -1 on failure
*/
static int dediprog_read_id(struct dediprog_data *const dp)
{
const int min_len = 3;
int ret;
if (dp->devicetype >= DEV_SF600PG2) {
const uint8_t out[6] = { 0x00, 0x00, 0x00, 0x02, 0x00, 0x00 };
const uint8_t cmd = 0x71;
uint8_t buf[512];
int transferred;
int try;
/* Always query the id twice as the endpoint
can lock up in mysterious ways otherwise. */
for (try = 0; try < 2; ++try) {
ret = dediprog_write(dp->handle, cmd, 0, 0, out, sizeof(out));
if (ret != (int)sizeof(out))
goto failed_ret;
ret = libusb_bulk_transfer(dp->handle, dp->in_endpoint,
buf, sizeof(buf), &transferred, DEFAULT_TIMEOUT);
}
if (ret == 0 && transferred >= min_len)
return buf[2] << 16 | buf[1] << 8 | buf[0];
} else {
uint8_t buf[16];
if (dp->devicetype >= DEV_SF600) {
ret = dediprog_read(dp->handle, CMD_READ_EEPROM, 0, 0, buf, sizeof(buf));
} else {
ret = libusb_control_transfer(dp->handle, REQTYPE_OTHER_IN,
0x7, /* request */
0, /* value */
0xEF00, /* index */
buf, min_len, DEFAULT_TIMEOUT);
}
if (ret >= min_len)
return buf[0] << 16 | buf[1] << 8 | buf[2];
}
failed_ret:
msg_perr("Failed to read dediprog id: ");
if (ret < 0)
msg_perr("%s (%d)\n", libusb_strerror(ret), ret);
else
msg_perr("short read!\n");
return -1;
}
/*
* This command presumably sets the voltage for the SF100 itself (not the
* SPI flash). Only use this command with firmware older than V6.0.0. Newer
* (including all SF600s) do not support it.
*/
/* This command presumably sets the voltage for the SF100 itself (not the SPI flash).
* Only use dediprog_set_voltage on SF100 programmers with firmware older
* than V6.0.0. Newer programmers (including all SF600s) do not support it. */
static int dediprog_set_voltage(libusb_device_handle *dediprog_handle)
{
unsigned char buf[1] = {0};
int ret = libusb_control_transfer(dediprog_handle, REQTYPE_OTHER_IN, CMD_SET_VOLTAGE, 0x0, 0x0,
buf, 0x1, DEFAULT_TIMEOUT);
if (ret < 0) {
msg_perr("Command Set Voltage failed (%s)!\n", libusb_error_name(ret));
return 1;
}
if ((ret != 1) || (buf[0] != 0x6f)) {
msg_perr("Unexpected response to init!\n");
return 1;
}
return 0;
}
static int dediprog_standalone_mode(const struct dediprog_data *dp_data)
{
int ret;
if (dp_data->devicetype != DEV_SF600)
return 0;
msg_pdbg2("Disabling standalone mode.\n");
ret = dediprog_write(dp_data->handle, CMD_SET_STANDALONE, LEAVE_STANDALONE_MODE, 0, NULL, 0);
if (ret) {
msg_perr("Failed to disable standalone mode: %s\n", libusb_error_name(ret));
return 1;
}
return 0;
}
#if 0
/* Something.
* Present in eng_detect_blink.log with firmware 3.1.8
* Always preceded by Command Receive Device String
*/
static int dediprog_command_b(libusb_device_handle *dediprog_handle)
{
int ret;
char buf[0x3];
ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x7, 0x0, 0xef00,
buf, 0x3, DEFAULT_TIMEOUT);
if (ret < 0) {
msg_perr("Command B failed (%s)!\n", libusb_error_name(ret));
return 1;
}
if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) ||
(buf[2] != 0xff)) {
msg_perr("Unexpected response to Command B!\n");
return 1;
}
return 0;
}
#endif
static int set_target_flash(libusb_device_handle *dediprog_handle, enum dediprog_target target)
{
int ret = dediprog_write(dediprog_handle, CMD_SET_TARGET, target, 0, NULL, 0);
if (ret != 0) {
msg_perr("set_target_flash failed (%s)!\n", libusb_error_name(ret));
return 1;
}
return 0;
}
#if 0
/* Returns true if the button is currently pressed. */
static bool dediprog_get_button(libusb_device_handle *dediprog_handle)
{
char buf[1];
int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_GET_BUTTON, 0, 0,
buf, 0x1, DEFAULT_TIMEOUT);
if (ret != 0) {
msg_perr("Could not get button state (%s)!\n", libusb_error_name(ret));
return 1;
}
return buf[0] != 1;
}
#endif
static int parse_voltage(char *voltage)
{
char *tmp = NULL;
int i;
int millivolt = 0, fraction = 0;
if (!voltage || !strlen(voltage)) {
msg_perr("Empty voltage= specified.\n");
return -1;
}
millivolt = (int)strtol(voltage, &tmp, 0);
voltage = tmp;
/* Handle "," and "." as decimal point. Everything after it is assumed
* to be in decimal notation.
*/
if ((*voltage == '.') || (*voltage == ',')) {
voltage++;
for (i = 0; i < 3; i++) {
fraction *= 10;
/* Don't advance if the current character is invalid,
* but continue multiplying.
*/
if ((*voltage < '0') || (*voltage > '9'))
continue;
fraction += *voltage - '0';
voltage++;
}
/* Throw away remaining digits. */
voltage += strspn(voltage, "0123456789");
}
/* The remaining string must be empty or "mV" or "V". */
tolower_string(voltage);
/* No unit or "V". */
if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) {
millivolt *= 1000;
millivolt += fraction;
} else if (!strncmp(voltage, "mv", 2) ||
!strncmp(voltage, "milliv", 6)) {
/* No adjustment. fraction is discarded. */
} else {
/* Garbage at the end of the string. */
msg_perr("Garbage voltage= specified.\n");
return -1;
}
return millivolt;
}
static int dediprog_shutdown(void *data);
static struct spi_master spi_master_dediprog = {
.features = SPI_MASTER_NO_4BA_MODES,
.max_data_read = 16, /* 18 seems to work fine as well, but 19 times out sometimes with FW 5.15. */
.max_data_write = 16 - 5, /* Account for 5 bytes cmd/addr. */
.command = dediprog_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = dediprog_spi_read,
.write_256 = dediprog_spi_write_256,
.write_aai = dediprog_spi_write_aai,
.shutdown = dediprog_shutdown,
.probe_opcode = default_spi_probe_opcode,
};
/*
* Open a dediprog_handle with the USB device at the given index.
* @index index of the USB device
* @return 0 for success, -1 for error, -2 for busy device, -3 for unknown device
*/
static int dediprog_open(int index, struct dediprog_data *dp_data)
{
const uint16_t vid = devs_dediprog[0].vendor_id;
const uint16_t pid = devs_dediprog[0].device_id;
int ret;
dp_data->handle = usb_dev_get_by_vid_pid_number(dp_data->usb_ctx, vid, pid, (unsigned int) index);
if (!dp_data->handle) {
msg_perr("Could not find a Dediprog programmer on USB.\n");
libusb_exit(dp_data->usb_ctx);
return -1;
}
ret = libusb_set_configuration(dp_data->handle, 1);
if (ret != 0) {
msg_perr("Could not set USB device configuration: %i %s\n",
ret, libusb_error_name(ret));
libusb_close(dp_data->handle);
return -2;
}
ret = libusb_claim_interface(dp_data->handle, 0);
if (ret < 0) {
msg_perr("Could not claim USB device interface %i: %i %s\n",
0, ret, libusb_error_name(ret));
libusb_close(dp_data->handle);
return -2;
}
/* Try reading the devicestring. If that fails and the device is old
(FW < 6.0.0, which we cannot know), then we need to try the "set
voltage" command and then attempt to read the devicestring again. */
if (dediprog_read_devicestring(dp_data, /* warn => */false)) {
if (dediprog_set_voltage(dp_data->handle))
goto unknown_dev;
if (dediprog_read_devicestring(dp_data, /* warn => */true))
goto unknown_dev;
}
dp_data->in_endpoint = LIBUSB_ENDPOINT_IN | 2;
if (dp_data->devicetype <= DEV_SF200)
dp_data->out_endpoint = 2;
else
dp_data->out_endpoint = 1;
return 0;
unknown_dev:
msg_pwarn("Ignoring unknown Dediprog device. Not a SF100, SF200, SF600(Plus(G2)), or SF700!\n");
libusb_release_interface(dp_data->handle, 0);
libusb_close(dp_data->handle);
return -3;
}
static int dediprog_shutdown(void *data)
{
int ret = 0;
struct dediprog_data *dp_data = data;
dediprog_set_io_mode(dp_data, SINGLE_IO_1_1_1);
/* URB 28. Command Set SPI Voltage to 0. */
if (dediprog_set_spi_voltage(dp_data->handle, 0x0)) {
ret = 1;
goto out;
}
if (libusb_release_interface(dp_data->handle, 0)) {
msg_perr("Could not release USB interface!\n");
ret = 1;
goto out;
}
libusb_close(dp_data->handle);
libusb_exit(dp_data->usb_ctx);
out:
free(data);
return ret;
}
static int dediprog_init(struct flashprog_programmer *const prog)
{
char *voltage, *id_str, *device, *spispeed, *target_str;
enum {
DEFAULT,
SINGLE,
DUAL,
QUAD,
} io_mode = DEFAULT;
int spispeed_idx = 1;
int millivolt = 3500;
long id = -1; /* -1 defaults to enumeration order */
int found_id;
long usedevice = 0;
long target = FLASH_TYPE_APPLICATION_FLASH_1;
int i, ret;
char *const io_mode_str = extract_programmer_param("iomode");
if (io_mode_str) {
if (strcmp(io_mode_str, "single") == 0) {
io_mode = SINGLE;
} else if (strcmp(io_mode_str, "dual") == 0) {
io_mode = DUAL;
} else if (strcmp(io_mode_str, "quad") == 0) {
io_mode = QUAD;
} else {
msg_perr("Invalid iomode setting: %s\n", io_mode_str);
return SPI_GENERIC_ERROR;
}
}
free(io_mode_str);
spispeed = extract_programmer_param("spispeed");
if (spispeed) {
for (i = 0; spispeeds[i].name; ++i) {
if (!strcasecmp(spispeeds[i].name, spispeed)) {
spispeed_idx = i;
break;
}
}
if (!spispeeds[i].name) {
msg_perr("Error: Invalid spispeed value: '%s'.\n", spispeed);
free(spispeed);
return 1;
}
free(spispeed);
}
voltage = extract_programmer_param("voltage");
if (voltage) {
millivolt = parse_voltage(voltage);
free(voltage);
if (millivolt < 0)
return 1;
msg_pinfo("Setting voltage to %i mV\n", millivolt);
}
id_str = extract_programmer_param("id");
if (id_str) {
const char prefixes[][4] = { "SF", "DP", "S6B", };
for (i = 0; i < (int)ARRAY_SIZE(prefixes); ++i) {
if (!strncmp(id_str, prefixes[i], strlen(prefixes[i])))
break;
}
if (i >= (int)ARRAY_SIZE(prefixes)) {
msg_perr("Error: Could not parse dediprog `id'.\n");
msg_perr("Expected a string prefixed with any of ");
for (i = 0; i < (int)ARRAY_SIZE(prefixes); ++i)
msg_perr("%s`%s'", i > 0 ? ", " : "", prefixes[i]);
msg_perr(".\n");
free(id_str);
return 1;
}
char *endptr;
id = strtol(id_str + strlen(prefixes[i]), &endptr, 10);
if (strlen(id_str) <= strlen(prefixes[i]) || *endptr) {
msg_perr("Error: Could not parse dediprog `id'.\n");
msg_perr("Expected a number after string prefix.\n");
free(id_str);
return 1;
}
if (id < 0 || id >= 0x1000000) {
msg_perr("Error: id `%s' is out of range!\n", id_str);
free(id_str);
return 1;
}
msg_pinfo("Will search for dediprog id %s.\n", id_str);
}
free(id_str);
device = extract_programmer_param("device");
if (device) {
char *dev_suffix;
if (id != -1) {
msg_perr("Error: Cannot use 'id' and 'device'.\n");
}
errno = 0;
usedevice = strtol(device, &dev_suffix, 10);
if (errno != 0 || device == dev_suffix) {
msg_perr("Error: Could not convert 'device'.\n");
free(device);
return 1;
}
if (usedevice < 0 || usedevice > INT_MAX) {
msg_perr("Error: Value for 'device' is out of range.\n");
free(device);
return 1;
}
if (strlen(dev_suffix) > 0) {
msg_perr("Error: Garbage following 'device' value.\n");
free(device);
return 1;
}
msg_pinfo("Using device %li.\n", usedevice);
}
free(device);
target_str = extract_programmer_param("target");
if (target_str) {
char *target_suffix;
errno = 0;
target = strtol(target_str, &target_suffix, 10);
if (errno != 0 || target_str == target_suffix) {
msg_perr("Error: Could not convert 'target'.\n");
free(target_str);
return 1;
}
if (target < 1 || target > 2) {
msg_perr("Error: Value for 'target' is out of range.\n");
free(target_str);
return 1;
}
if (strlen(target_suffix) > 0) {
msg_perr("Error: Garbage following 'target' value.\n");
free(target_str);
return 1;
}
switch (target) {
case 1:
msg_pinfo("Using target %s.\n", "FLASH_TYPE_APPLICATION_FLASH_1");
target = FLASH_TYPE_APPLICATION_FLASH_1;
break;
case 2:
msg_pinfo("Using target %s.\n", "FLASH_TYPE_APPLICATION_FLASH_2");
target = FLASH_TYPE_APPLICATION_FLASH_2;
break;
default:
break;
}
}
free(target_str);
struct dediprog_data *dp_data = calloc(1, sizeof(*dp_data));
if (!dp_data) {
msg_perr("Unable to allocate space for SPI master data\n");
return 1;
}
dp_data->firmwareversion = FIRMWARE_VERSION(0, 0, 0);
dp_data->devicetype = DEV_UNKNOWN;
dp_data->io_mode = -1;
/* Here comes the USB stuff. */
ret = libusb_init(&dp_data->usb_ctx);
if (ret) {
msg_perr("Could not initialize libusb!\n");
goto init_err_exit;
}
if (id != -1) {
for (i = 0; ; i++) {
ret = dediprog_open(i, dp_data);
if (ret == -1) {
/* no dev */
goto init_err_exit;
} else if (ret < 0) {
/* busy or unknown dev */
continue;
}
/* Notice we can only call dediprog_read_id() after
* libusb_set_configuration() and
* libusb_claim_interface(). When searching by id and
* either configuration or claim fails (usually the
* device is in use by another instance of flashprog),
* the device is skipped and the next device is tried.
*/
found_id = dediprog_read_id(dp_data);
if (found_id >= 0)
msg_pinfo("Found dediprog id SF%06d.\n", found_id);
if (found_id == id)
break;
libusb_release_interface(dp_data->handle, 0);
libusb_close(dp_data->handle);
}
} else {
if (dediprog_open(usedevice, dp_data)) {
goto init_err_exit;
}
found_id = dediprog_read_id(dp_data);
}
if (found_id >= 0) {
msg_pinfo("Using dediprog id SF%06d.\n", found_id);
}
if (dediprog_check_devicestring(dp_data))
goto init_err_cleanup_exit;
/* Set all possible LEDs as soon as possible to indicate activity.
* Because knowing the firmware version is required to set the LEDs correctly we need to this after
* dediprog_check_devicestring() has queried the device. */
dediprog_set_leds(LED_ALL, dp_data);
/* Select target/socket, frequency and VCC. */
if (set_target_flash(dp_data->handle, target) ||
dediprog_set_spi_speed(spispeed_idx, dp_data) ||
dediprog_set_spi_voltage(dp_data->handle, millivolt)) {
dediprog_set_leds(LED_ERROR, dp_data);
goto init_err_cleanup_exit;
}
if (dediprog_standalone_mode(dp_data))
goto init_err_cleanup_exit;
switch (protocol(dp_data)) {
case PROTOCOL_V3: dp_data->prepare_rw_cmd = prepare_rw_cmd_v3; break;
case PROTOCOL_V2: dp_data->prepare_rw_cmd = prepare_rw_cmd_v2; break;
default: dp_data->prepare_rw_cmd = prepare_rw_cmd_v1; break;
}
if (io_mode == DEFAULT) {
if (protocol(dp_data) < PROTOCOL_V3) {
msg_pdbg("Multi i/o is only tested with protocol v3, not enabling by default.\n");
} else {
io_mode = DUAL;
}
} else if (io_mode > SINGLE &&
(dp_data->devicetype < DEV_SF600 || protocol(dp_data) < PROTOCOL_V2)) {
msg_pinfo("Multi i/o is only supported for SF600 and SF700 models w/ protocol v2 or later.\n");
io_mode = SINGLE;
}
switch (io_mode) {
case DUAL: spi_master_dediprog.features |= SPI_MASTER_DUAL; break;
case QUAD: spi_master_dediprog.features |= SPI_MASTER_DUAL | SPI_MASTER_QUAD; break;
default: break;
}
/* The v2, fixed-op JEDEC_FAST_READ_DUAL_DIO command
seems to use the wrong number of dummy cycles. */
if (protocol(dp_data) < PROTOCOL_V3)
spi_master_dediprog.features &= ~SPI_MASTER_DUAL_IO;
if ((dp_data->devicetype == DEV_SF100 && protocol(dp_data) == PROTOCOL_V1) ||
(dp_data->devicetype >= DEV_SF600 && protocol(dp_data) == PROTOCOL_V3))
spi_master_dediprog.features &= ~SPI_MASTER_NO_4BA_MODES;
if (protocol(dp_data) >= PROTOCOL_V2)
spi_master_dediprog.features |= SPI_MASTER_4BA;
if (dediprog_set_leds(LED_NONE, dp_data))
goto init_err_cleanup_exit;
return register_spi_master(&spi_master_dediprog, 0, dp_data);
init_err_cleanup_exit:
dediprog_shutdown(dp_data);
return 1;
init_err_exit:
free(dp_data);
return 1;
}
const struct programmer_entry programmer_dediprog = {
.name = "dediprog",
.type = USB,
.devs.dev = devs_dediprog,
.init = dediprog_init,
};