blob: 98a846399ebf69942765e34f7431d9cb13279d42 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include "flash.h"
#if defined(__FreeBSD__) || defined(__DragonFly__)
int io_fd;
#endif
#if NEED_PCI == 1
struct pci_dev *pci_dev_find_filter(struct pci_filter filter)
{
struct pci_dev *temp;
for (temp = pacc->devices; temp; temp = temp->next)
if (pci_filter_match(&filter, temp))
return temp;
return NULL;
}
struct pci_dev *pci_dev_find_vendorclass(uint16_t vendor, uint16_t class)
{
struct pci_dev *temp;
struct pci_filter filter;
uint16_t tmp2;
pci_filter_init(NULL, &filter);
filter.vendor = vendor;
for (temp = pacc->devices; temp; temp = temp->next)
if (pci_filter_match(&filter, temp)) {
/* Read PCI class */
tmp2 = pci_read_word(temp, 0x0a);
if (tmp2 == class)
return temp;
}
return NULL;
}
struct pci_dev *pci_dev_find(uint16_t vendor, uint16_t device)
{
struct pci_dev *temp;
struct pci_filter filter;
pci_filter_init(NULL, &filter);
filter.vendor = vendor;
filter.device = device;
for (temp = pacc->devices; temp; temp = temp->next)
if (pci_filter_match(&filter, temp))
return temp;
return NULL;
}
struct pci_dev *pci_card_find(uint16_t vendor, uint16_t device,
uint16_t card_vendor, uint16_t card_device)
{
struct pci_dev *temp;
struct pci_filter filter;
pci_filter_init(NULL, &filter);
filter.vendor = vendor;
filter.device = device;
for (temp = pacc->devices; temp; temp = temp->next)
if (pci_filter_match(&filter, temp)) {
if ((card_vendor ==
pci_read_word(temp, PCI_SUBSYSTEM_VENDOR_ID))
&& (card_device ==
pci_read_word(temp, PCI_SUBSYSTEM_ID)))
return temp;
}
return NULL;
}
#endif
void get_io_perms(void)
{
#if defined (__sun) && (defined(__i386) || defined(__amd64))
if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) {
#elif defined(__FreeBSD__) || defined (__DragonFly__)
if ((io_fd = open("/dev/io", O_RDWR)) < 0) {
#else
if (iopl(3) != 0) {
#endif
fprintf(stderr, "ERROR: Could not get I/O privileges (%s).\n"
"You need to be root.\n", strerror(errno));
exit(1);
}
}
void release_io_perms(void)
{
#if defined(__FreeBSD__) || defined(__DragonFly__)
close(io_fd);
#endif
}
#if INTERNAL_SUPPORT == 1
struct superio superio = {};
void probe_superio(void)
{
superio = probe_superio_ite();
#if 0 /* Winbond SuperI/O code is not yet available. */
if (superio.vendor == SUPERIO_VENDOR_NONE)
superio = probe_superio_winbond();
#endif
}
int internal_init(void)
{
int ret = 0;
get_io_perms();
/* Initialize PCI access for flash enables */
pacc = pci_alloc(); /* Get the pci_access structure */
/* Set all options you want -- here we stick with the defaults */
pci_init(pacc); /* Initialize the PCI library */
pci_scan_bus(pacc); /* We want to get the list of devices */
/* We look at the lbtable first to see if we need a
* mainboard specific flash enable sequence.
*/
coreboot_init();
/* Probe for the SuperI/O chip and fill global struct superio. */
probe_superio();
/* try to enable it. Failure IS an option, since not all motherboards
* really need this to be done, etc., etc.
*/
ret = chipset_flash_enable();
if (ret == -2) {
printf("WARNING: No chipset found. Flash detection "
"will most likely fail.\n");
}
board_flash_enable(lb_vendor, lb_part);
/* Even if chipset init returns an error code, we don't want to abort.
* The error code might have been a warning only.
* Besides that, we don't check the board enable return code either.
*/
return 0;
}
int internal_shutdown(void)
{
release_io_perms();
return 0;
}
#endif
void internal_chip_writeb(uint8_t val, chipaddr addr)
{
mmio_writeb(val, (void *) addr);
}
void internal_chip_writew(uint16_t val, chipaddr addr)
{
mmio_writew(val, (void *) addr);
}
void internal_chip_writel(uint32_t val, chipaddr addr)
{
mmio_writel(val, (void *) addr);
}
uint8_t internal_chip_readb(const chipaddr addr)
{
return mmio_readb((void *) addr);
}
uint16_t internal_chip_readw(const chipaddr addr)
{
return mmio_readw((void *) addr);
}
uint32_t internal_chip_readl(const chipaddr addr)
{
return mmio_readl((void *) addr);
}
void internal_chip_readn(uint8_t *buf, const chipaddr addr, size_t len)
{
memcpy(buf, (void *)addr, len);
return;
}
void mmio_writeb(uint8_t val, void *addr)
{
*(volatile uint8_t *) addr = val;
}
void mmio_writew(uint16_t val, void *addr)
{
*(volatile uint16_t *) addr = val;
}
void mmio_writel(uint32_t val, void *addr)
{
*(volatile uint32_t *) addr = val;
}
uint8_t mmio_readb(void *addr)
{
return *(volatile uint8_t *) addr;
}
uint16_t mmio_readw(void *addr)
{
return *(volatile uint16_t *) addr;
}
uint32_t mmio_readl(void *addr)
{
return *(volatile uint32_t *) addr;
}
/* No-op shutdown() for programmers which don't need special handling */
int noop_shutdown(void)
{
return 0;
}
/* Fallback map() for programmers which don't need special handling */
void *fallback_map(const char *descr, unsigned long phys_addr, size_t len)
{
/* FIXME: Should return phys_addr. */
return 0;
}
/* No-op/fallback unmap() for programmers which don't need special handling */
void fallback_unmap(void *virt_addr, size_t len)
{
}
/* No-op chip_writeb() for drivers not supporting addr/data pair accesses */
uint8_t noop_chip_readb(const chipaddr addr)
{
return 0xff;
}
/* No-op chip_writeb() for drivers not supporting addr/data pair accesses */
void noop_chip_writeb(uint8_t val, chipaddr addr)
{
}
/* Little-endian fallback for drivers not supporting 16 bit accesses */
void fallback_chip_writew(uint16_t val, chipaddr addr)
{
chip_writeb(val & 0xff, addr);
chip_writeb((val >> 8) & 0xff, addr + 1);
}
/* Little-endian fallback for drivers not supporting 16 bit accesses */
uint16_t fallback_chip_readw(const chipaddr addr)
{
uint16_t val;
val = chip_readb(addr);
val |= chip_readb(addr + 1) << 8;
return val;
}
/* Little-endian fallback for drivers not supporting 32 bit accesses */
void fallback_chip_writel(uint32_t val, chipaddr addr)
{
chip_writew(val & 0xffff, addr);
chip_writew((val >> 16) & 0xffff, addr + 2);
}
/* Little-endian fallback for drivers not supporting 32 bit accesses */
uint32_t fallback_chip_readl(const chipaddr addr)
{
uint32_t val;
val = chip_readw(addr);
val |= chip_readw(addr + 2) << 16;
return val;
}
void fallback_chip_writen(uint8_t *buf, chipaddr addr, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
chip_writeb(buf[i], addr + i);
return;
}
void fallback_chip_readn(uint8_t *buf, chipaddr addr, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
buf[i] = chip_readb(addr + i);
return;
}