blob: cb3f7bfadf6a7aef08537eb4310f559893c0d31c [file] [log] [blame]
-- Derived from GRUB -- GRand Unified Bootloader
-- Copyright (C) 1999, 2001, 2003 Free Software Foundation, Inc.
-- Copyright (C) 2023 secunet Security Networks AG
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
with Ada.Unchecked_Conversion;
with System;
with Interfaces;
with Interfaces.C;
with Interfaces.C.Strings;
with FILO.Blockdev;
with FILO.FS.VFS;
use Interfaces.C;
package body FILO.FS.Ext2 is
function Is_Mounted (State : T) return Boolean is (State.S >= Mounted);
function Is_Open (State : T) return Boolean is (State.S = File_Opened);
--------------------------------------------------------------------------
SUPERBLOCK_SIZE : constant := 1024;
SUPERBLOCK_BLOCKS : constant := SUPERBLOCK_SIZE / BLOCK_SIZE;
SUPERBLOCK_MAGIC : constant := 16#ef53#;
OLD_REV : constant := 0;
DYNAMIC_REV : constant := 1;
FEATURE_INCOMPAT_EXTENTS : constant := 16#0040#;
FEATURE_INCOMPAT_64BIT : constant := 16#0080#;
EXT4_EXTENTS_FL : constant := 16#8_0000#;
procedure Mount
(State : in out T;
Part_Len : in Partition_Length;
Success : out Boolean)
is
Super_Block : Buffer_Type (0 .. SUPERBLOCK_SIZE - 1) := (others => 0);
begin
if Part_Len < 2 * SUPERBLOCK_SIZE then
Success := False;
return;
end if;
Blockdev.Read (Super_Block, 1 * SUPERBLOCK_SIZE, Success);
if not Success then
return;
end if;
if Read_LE16 (Super_Block, 14 * 4) /= 16#ef53# then
Success := False;
return;
end if;
State.Part_Len := Part_Len;
State.First_Data_Block := FSBlock_Offset (Read_LE32 (Super_Block, 5 * 4));
declare
S_Log_Block_Size : constant Unsigned_32 := Read_LE32 (Super_Block, 6 * 4);
begin
if S_Log_Block_Size <= Unsigned_32 (Log_Block_Size'Last - 10) then
State.Block_Size_Bits := Log_Block_Size (S_Log_Block_Size + 10);
else
Success := False;
return;
end if;
end;
declare
S_Inodes_Per_Group : constant Unsigned_32 := Read_LE32 (Super_Block, 10 * 4);
begin
if S_Inodes_Per_Group in 1 .. Unsigned_32'Last then
State.Inodes_Per_Group := Inode_Index (S_Inodes_Per_Group);
else
Success := False;
return;
end if;
end;
declare
S_Rev_Level : constant Unsigned_32 := Read_LE32 (Super_Block, 19 * 4);
begin
if S_Rev_Level >= DYNAMIC_REV then
declare
S_Inode_Size : constant Unsigned_16 := Read_LE16 (Super_Block, 22 * 4);
begin
if S_Inode_Size in
Unsigned_16 (Inode_Size'First) .. Unsigned_16 (Inode_Size'Last)
then
State.Inode_Size := Inode_Size (S_Inode_Size);
else
Success := False;
return;
end if;
end;
else
State.Inode_Size := Inode_Size'First;
end if;
end;
declare
S_Feature_Incompat : constant Unsigned_32 := Read_LE32 (Super_Block, 24 * 4);
begin
State.Feature_Extents := (S_Feature_Incompat and FEATURE_INCOMPAT_EXTENTS) /= 0;
State.Feature_64Bit := (S_Feature_Incompat and FEATURE_INCOMPAT_64BIT) /= 0;
if State.Feature_64Bit then
declare
S_Desc_Size : constant Unsigned_16 := Read_LE16 (Super_Block, 63 * 4 + 2);
begin
if Is_Power_Of_2 (S_Desc_Size) and then
S_Desc_Size in Unsigned_16 (Desc_Size'First) ..
Unsigned_16 (Positive'Min (Desc_Size'Last, 2 ** State.Block_Size_Bits))
then
State.Desc_Size := Desc_Size (S_Desc_Size);
else
Success := False;
return;
end if;
end;
State.Feature_64Bit := State.Feature_64Bit and State.Desc_Size >= 64;
else
State.Desc_Size := Desc_Size'First;
end if;
end;
State.S := Mounted;
end Mount;
procedure Read_FSBlock
(State : in T;
Buf : out Buffer_Type;
FSBlock : in FSBlock_Offset;
Success : out Boolean)
with
Pre =>
Is_Mounted (State) and
Buf'Length = 2 ** State.Block_Size_Bits
is
Block_Size : constant Blockdev_Length := 2 ** State.Block_Size_Bits;
Max_Block_Offset : constant FSBlock_Offset :=
FSBlock_Offset (State.Part_Len / Block_Size - 1);
begin
if FSBlock > Max_Block_Offset then
Success := False;
return;
end if;
Blockdev.Read (Buf, Blockdev_Length (FSBlock) * Block_Size, Success);
end Read_FSBlock;
procedure Cache_FSBlock
(State : in out T;
Phys : in FSBlock_Offset;
Level : in Block_Cache_Index;
Label : in Cache_Label;
Logical : in Boolean := True;
Cache_Start : out Max_Block_Index;
Cache_End : out Max_Block_Index;
Success : out Boolean)
with
Post => Cache_End = Cache_Start + 2 ** State.Block_Size_Bits
is
Block_Size : constant Natural := 2 ** State.Block_Size_Bits;
-- Limit cache usage depending on block size:
Max_Level : constant Block_Cache_Index :=
2 ** (Log_Block_Size'Last - State.Block_Size_Bits) - 1;
Cache_Level : constant Block_Cache_Index :=
Block_Cache_Index'Min (Level, Max_Level);
begin
Cache_Start := Cache_Level * Block_Size;
Cache_End := Cache_Start + Block_Size - 1;
if State.Block_Cache_Logical (Cache_Level) = Logical and
State.Block_Cache_Label (Cache_Level) = Label
then
Success := True;
else
Read_FSBlock
(State => State,
Buf => State.Block_Cache (Cache_Start .. Cache_End),
FSBlock => Phys,
Success => Success);
State.Block_Cache_Logical (Cache_Level) := Logical;
State.Block_Cache_Label (Cache_Level) := Label;
end if;
end Cache_FSBlock;
procedure Cache_FSBlock
(State : in out T;
Phys : in FSBlock_Offset;
Level : in Block_Cache_Index;
Cache_Start : out Max_Block_Index;
Cache_End : out Max_Block_Index;
Success : out Boolean)
with
Post => Cache_End = Cache_Start + 2 ** State.Block_Size_Bits
is
begin
Cache_FSBlock (State, Phys, Level, Cache_Label (Phys),
False, Cache_Start, Cache_End, Success);
end Cache_FSBlock;
procedure Reset_Cache_Logical (State : in out T) is
begin
for I in Block_Cache_Index loop
if State.Block_Cache_Logical (I) then
State.Block_Cache_Logical (I) := False;
State.Block_Cache_Label (I) := 0;
end if;
end loop;
end Reset_Cache_Logical;
procedure Ext2_Block_Map
(State : in out T;
Logical : in FSBlock_Logical;
Physical : out FSBlock_Offset;
Success : out Boolean)
is
Direct_Blocks : constant := 12;
type Direct_Blocks_Array is array (Natural range 0 .. Direct_Blocks - 1) of Unsigned_32;
type Inode_Blocks is record
Direct_Blocks : Direct_Blocks_Array;
Indirect_Block : Unsigned_32;
Double_Indirect : Unsigned_32;
Triple_Indirect : Unsigned_32;
end record
with Size => Inode_Extents'Length * 8;
function I_Blocks is new Ada.Unchecked_Conversion (Inode_Extents, Inode_Blocks);
function I_Blocks (State : T) return Inode_Blocks is (I_Blocks (State.Inode.Inline));
Block_Size : constant Natural := 2 ** State.Block_Size_Bits;
Addr_Per_Block : constant FSBlock_Logical := FSBlock_Logical (Block_Size / 4);
Max_Addr_Per_Block : constant FSBlock_Logical := FSBlock_Logical (2 ** Log_Block_Size'Last / 4);
type Addr_In_Block_Range is range 0 .. Max_Addr_Per_Block - 1;
procedure Indirect_Block_Lookup
(Indirect_Block_Phys : in FSBlock_Offset;
Addr_In_Block : in Addr_In_Block_Range;
Level : in Block_Cache_Index;
Logical_Off : in FSBlock_Logical;
Next_Physical : out FSBlock_Offset;
Success : out Boolean)
with
Pre => FSBlock_Logical (Addr_In_Block) < Addr_Per_Block
is
Cache_Start, Cache_End : Max_Block_Index;
begin
Cache_FSBlock
(State => State,
Phys => Indirect_Block_Phys,
Level => Level,
Label => Cache_Label (Logical_Off),
Cache_Start => Cache_Start,
Cache_End => Cache_End,
Success => Success);
Next_Physical := FSBlock_Offset (Read_LE32
(Buf => State.Block_Cache (Cache_Start .. Cache_End),
Off => Natural (Addr_In_Block) * 4));
end Indirect_Block_Lookup;
Logical_Rest : FSBlock_Logical := Logical;
begin
if Logical_Rest < Direct_Blocks then
Physical := FSBlock_Offset (I_Blocks (State).Direct_Blocks (Natural (Logical)));
Success := True;
return;
end if;
Logical_Rest := Logical_Rest - Direct_Blocks;
if Logical_Rest < Addr_Per_Block then
Indirect_Block_Lookup
(Indirect_Block_Phys => FSBlock_Offset (I_Blocks (State).Indirect_Block),
Addr_In_Block => Addr_In_Block_Range (Logical_Rest),
Level => 0,
Logical_Off => Logical - Logical_Rest,
Next_Physical => Physical,
Success => Success);
return;
end if;
Logical_Rest := Logical_Rest - Addr_Per_Block;
if Logical_Rest < Addr_Per_Block ** 2 then
Indirect_Block_Lookup
(Indirect_Block_Phys => FSBlock_Offset (I_Blocks (State).Double_Indirect),
Addr_In_Block => Addr_In_Block_Range (Logical_Rest / Addr_Per_Block),
Level => 1,
Logical_Off => Logical - Logical_Rest,
Next_Physical => Physical,
Success => Success);
if not Success then
return;
end if;
Indirect_Block_Lookup
(Indirect_Block_Phys => Physical,
Addr_In_Block => Addr_In_Block_Range (Logical_Rest mod Addr_Per_Block),
Level => 0,
Logical_Off => Logical - (Logical_Rest mod Addr_Per_Block),
Next_Physical => Physical,
Success => Success);
return;
end if;
Logical_Rest := Logical_Rest - Addr_Per_Block ** 2;
if Logical_Rest < Addr_Per_Block ** 3 then
Indirect_Block_Lookup
(Indirect_Block_Phys => FSBlock_Offset (I_Blocks (State).Triple_Indirect),
Addr_In_Block => Addr_In_Block_Range (Logical_Rest / Addr_Per_Block ** 2),
Level => 2,
Logical_Off => Logical - Logical_Rest,
Next_Physical => Physical,
Success => Success);
if not Success then
return;
end if;
Indirect_Block_Lookup
(Indirect_Block_Phys => Physical,
Addr_In_Block => Addr_In_Block_Range (Logical_Rest / Addr_Per_Block mod Addr_Per_Block),
Level => 1,
Logical_Off => Logical - (Logical_Rest mod Addr_Per_Block ** 2),
Next_Physical => Physical,
Success => Success);
if not Success then
return;
end if;
Indirect_Block_Lookup
(Indirect_Block_Phys => Physical,
Addr_In_Block => Addr_In_Block_Range (Logical_Rest mod Addr_Per_Block),
Level => 0,
Logical_Off => Logical - (Logical_Rest mod Addr_Per_Block),
Next_Physical => Physical,
Success => Success);
return;
end if;
-- Logical address was just too high.
Success := False;
end Ext2_Block_Map;
procedure Extent_Block_Map
(State : in out T;
Logical : in FSBlock_Logical;
Physical : out FSBlock_Offset;
Success : out Boolean)
is
-- Extent blocks always start with a 12B header and contain 12B entries.
-- Every entry starts with the number of the first logical block it
-- covers. Entries are sorted by this number.
-- Depth > 0 blocks have index entries, referencing further extent blocks.
-- Depth = 0 blocks have extent entries, referencing a contiguous range
-- of data blocks.
--
-- +-----------------+
-- .-> | Hdr depth=0 |
-- | +-----------------+
-- | | Extent 0.. 12 |
-- +-------------+ | +-----------------+
-- | Hdr depth=1 | | | Extent 13.. 13 |
-- +-------------+ | +-----------------+
-- | Index 0 | --' | Extent 14..122 |
-- +-------------+ +-----------------+
-- | Index 123 | --.
-- +-------------+ | +-----------------+
-- `-> | Hdr depth=0 |
-- +-----------------+
-- | Extent 123..125 |
-- +-----------------+
-- | Extent 126..234 |
-- +-----------------+
--
Extent_Header_Size : constant := 12;
Extent_Header_Magic : constant := 16#f03a#;
subtype Extent_Off is Natural range 0 .. Extent_Header_Size;
subtype Extent_Idx is Natural range 1 .. (Max_Block_Index'Last + 1) / Extent_Header_Size - 1;
function Extent_Byte_Offset (Idx : Extent_Idx; Off : Extent_Off) return Natural
is
(Idx * Extent_Header_Size + Off);
function Header_Magic (Buf : Buffer_Type) return Unsigned_16
is
(Read_LE16 (Buf, 0))
with
Pre => Buf'Length >= 2;
function Header_Entries (Buf : Buffer_Type) return Natural
is
(Natural (Read_LE16 (Buf, 2)))
with
Pre => Buf'Length >= 4;
function Header_Depth (Buf : Buffer_Type) return Natural
is
(Natural (Read_LE16 (Buf, 6)))
with
Pre => Buf'Length >= 8;
function Index_Logical (Buf : Buffer_Type; Idx : Extent_Idx) return FSBlock_Logical
is
(FSBlock_Logical (Read_LE32 (Buf, Extent_Byte_Offset (Idx, 0))))
with
Pre => Buf'Length >= Extent_Byte_Offset (Idx, 4);
function Index_Physical (Buf : Buffer_Type; Idx : Extent_Idx) return FSBlock_Offset
is
(FSBlock_Offset
(Shift_Left (Unsigned_64 (Read_LE16 (Buf, Extent_Byte_Offset (Idx, 8))), 32) or
Unsigned_64 (Read_LE32 (Buf, Extent_Byte_Offset (Idx, 4)))))
with
Pre => Buf'Length >= Extent_Byte_Offset (Idx, 10);
function Extent_Logical (Buf : Buffer_Type; Idx : Extent_Idx) return FSBlock_Logical
renames Index_Logical;
function Extent_Length (Buf : Buffer_Type; Idx : Extent_Idx) return FSBlock_Logical
is
(FSBlock_Logical (Read_LE16 (Buf, Extent_Byte_Offset (Idx, 4))))
with
Pre => Buf'Length >= Extent_Byte_Offset (Idx, 6);
function Extent_Physical (Buf : Buffer_Type; Idx : Extent_Idx) return FSBlock_Offset
is
(FSBlock_Offset
(Shift_Left (Unsigned_64 (Read_LE16 (Buf, Extent_Byte_Offset (Idx, 6))), 32) or
Unsigned_64 (Read_LE32 (Buf, Extent_Byte_Offset (Idx, 8)))))
with
Pre => Buf'Length >= Extent_Byte_Offset (Idx, 12);
function Bin_Search (Buf : Buffer_Type; Refs : Extent_Idx) return Extent_Idx
with
Pre => Refs in 1 .. Extent_Idx (Buf'Length / Extent_Header_Size - 1) and
Extent_Logical (Buf, 1) <= Logical,
Post => Bin_Search'Result in 1 .. Refs and
Extent_Logical (Buf, Bin_Search'Result) <= Logical
is
Left : Extent_Idx := 1;
Right : Extent_Idx := Refs;
begin
while Left <= Right loop
declare
Mid : constant Extent_Idx := (Left + Right) / 2;
Ext_Logical : constant FSBlock_Logical := Extent_Logical (Buf, Mid);
begin
if Logical < Ext_Logical then
Right := Mid - 1;
else
Left := Mid + 1;
end if;
end;
end loop;
return Left - 1;
end Bin_Search;
procedure Next_Ref
(Current : in FSBlock_Offset;
Logical_Off : in FSBlock_Logical;
Depth : in Natural;
Next : out Extent_Idx;
Cache_Start : out Max_Block_Index;
Cache_End : out Max_Block_Index;
Success : out Boolean)
with
Pre => Logical_Off <= Logical,
Post => (if Success then
Extent_Logical (State.Block_Cache (Cache_Start .. Cache_End), Next) <= Logical)
is
Block_Size : constant Natural := 2 ** State.Block_Size_Bits;
Dynamic_Max_Index : constant Natural := Block_Size / Extent_Header_Size - 1;
begin
Cache_FSBlock
(State => State,
Phys => Current,
Level => Depth,
Label => Cache_Label (Logical_Off),
Cache_Start => Cache_Start,
Cache_End => Cache_End,
Success => Success);
if not Success then
Next := 1;
return;
end if;
declare
Hdr_Magic : constant Unsigned_16 :=
Header_Magic (State.Block_Cache (Cache_Start .. Cache_End));
Hdr_Entries : constant Natural :=
Header_Entries (State.Block_Cache (Cache_Start .. Cache_End));
Hdr_Depth : constant Natural :=
Header_Depth (State.Block_Cache (Cache_Start .. Cache_End));
First_Logical : constant FSBlock_Logical :=
Extent_Logical (State.Block_Cache (Cache_Start .. Cache_End), 1);
begin
Success := Success and then
Hdr_Magic = Extent_Header_Magic and then
Hdr_Depth = Depth and then
Hdr_Entries <= Dynamic_Max_Index and then
First_Logical = Logical_Off;
if not Success then
Next := 1;
else
Next := Bin_Search (State.Block_Cache (Cache_Start .. Cache_End), Hdr_Entries);
end if;
end;
end Next_Ref;
Inline_Extents : Ext2.Inode_Extents renames State.Inode.Inline;
Inode_Magic : constant Unsigned_16 := Header_Magic (Inline_Extents);
Inode_Entries : constant Natural := Header_Entries (Inline_Extents);
First_Logical : constant FSBlock_Logical := Extent_Logical (Inline_Extents, 1);
Depth : Natural := Header_Depth (Inline_Extents);
Cache_Start, Cache_End : Max_Block_Index;
Logical_Off, Length : FSBlock_Logical;
Idx : Extent_Idx;
begin
Success :=
Inode_Magic = Extent_Header_Magic and then
Inode_Entries > 0 and then
Inode_Entries < Inline_Extents'Length / Extent_Header_Size and then
First_Logical <= Logical;
if not Success then
Physical := 0;
return;
end if;
Idx := Bin_Search (Inline_Extents, Inode_Entries);
if Depth = 0 then
Physical := Extent_Physical (Inline_Extents, Idx);
Logical_Off := Extent_Logical (Inline_Extents, Idx);
Length := Extent_Length (Inline_Extents, Idx);
else
Physical := Index_Physical (Inline_Extents, Idx);
Logical_Off := Index_Logical (Inline_Extents, Idx);
loop
Depth := Depth - 1;
Next_Ref
(Current => Physical,
Logical_Off => Logical_Off,
Depth => Depth,
Next => Idx,
Cache_Start => Cache_Start,
Cache_End => Cache_End,
Success => Success);
if not Success then
return;
end if;
exit when Depth = 0;
Physical := Index_Physical (State.Block_Cache (Cache_Start .. Cache_End), Idx);
Logical_Off := Index_Logical (State.Block_Cache (Cache_Start .. Cache_End), Idx);
end loop;
Physical := Extent_Physical (State.Block_Cache (Cache_Start .. Cache_End), Idx);
Logical_Off := Extent_Logical (State.Block_Cache (Cache_Start .. Cache_End), Idx);
Length := Extent_Length (State.Block_Cache (Cache_Start .. Cache_End), Idx);
end if;
Success :=
Length > 0 and then
Logical_Off <= FSBlock_Logical'Last - Length and then
Logical < Logical_Off + Length;
if Success then
Physical := Physical + FSBlock_Offset (Logical - Logical_Off);
end if;
end Extent_Block_Map;
procedure Open
(State : in out T;
Inode : in Inode_Index;
Success : out Boolean)
with
Pre => Is_Mounted (State) and not Is_Open (State),
Post => Success = Is_Open (State)
is
type Group_Index is new Natural;
subtype Desc_In_Block_Index is Group_Index
range 0 .. Group_Index (2 ** Log_Block_Size'Last / Desc_Size'First - 1);
Block_Size : constant Natural := 2 ** State.Block_Size_Bits;
Inodes_Per_Block : constant Inode_Index := Inode_Index (Block_Size / State.Inode_Size);
Desc_Per_Block : constant Group_Index := Group_Index (Block_Size / State.Desc_Size);
subtype Group_Off is Natural range 0 .. Desc_Size'Last;
function Group_Byte_Offset (Idx : Group_Index; Off : Group_Off) return Natural
is
(Natural (Idx) * State.Desc_Size + Off);
function Group_Inode_Table (Buf : Buffer_Type; Idx : Group_Index) return FSBlock_Offset
is
(FSBlock_Offset (
(if State.Feature_64Bit
then Shift_Left (Unsigned_64 (Read_LE32 (Buf, Group_Byte_Offset (Idx, 40))), 32)
else 0)
or
Unsigned_64 (Read_LE32 (Buf, Group_Byte_Offset (Idx, 8)))))
with
Pre => Buf'Length >= Group_Byte_Offset (Idx, 44);
subtype Inode_Off is Natural range 0 .. Inode_Size'Last;
function Inode_Byte_Offset (Idx : Inode_Index; Off : Inode_Off) return Natural
is
(Natural (Idx) * State.Inode_Size + Off);
function Inode_Flags (Buf : Buffer_Type; Idx : Inode_Index) return Unsigned_32
is
(Read_LE32 (Buf, Inode_Byte_Offset (Idx, 32)))
with
Pre => Buf'Length >= Inode_Byte_Offset (Idx, 36);
Group : constant Group_Index := Group_Index ((Inode - 1) / State.Inodes_Per_Group);
Desc_Block : constant FSBlock_Offset :=
1 + State.First_Data_Block + FSBlock_Offset (Group / Desc_Per_Block);
Cache_Start, Cache_End : Max_Block_Index;
begin
Cache_FSBlock
(State => State,
Phys => Desc_Block,
Level => Natural'Min (Natural (Group / Desc_Per_Block), Block_Cache_Index'Last),
Cache_Start => Cache_Start,
Cache_End => Cache_End,
Success => Success);
if not Success then
return;
end if;
declare
Desc : constant Desc_In_Block_Index := Group mod Desc_Per_Block;
Inode_In_Group : constant Inode_Index := (Inode - 1) mod State.Inodes_Per_Group;
Inode_Block : constant FSBlock_Offset :=
Group_Inode_Table (State.Block_Cache (Cache_Start .. Cache_End), Group) +
FSBlock_Offset (Inode_In_Group / Inodes_Per_Block);
begin
Cache_FSBlock
(State => State,
Phys => Inode_Block,
Level => Block_Cache_Index'Last,
Cache_Start => Cache_Start,
Cache_End => Cache_End,
Success => Success);
if not Success then
return;
end if;
declare
Inode_In_Block : constant Inode_Index := Inode_In_Group mod Inodes_Per_Block;
I_Flags : constant Unsigned_32 :=
Inode_Flags (State.Block_Cache (Cache_Start .. Cache_End), Inode_In_Block);
begin
State.Inode.Use_Extents := State.Feature_Extents and (I_Flags and EXT4_EXTENTS_FL) /= 0;
State.Inode.Inline := State.Block_Cache (Cache_Start + 40 .. Cache_Start + 100 - 1);
Reset_Cache_Logical (State);
State.S := File_Opened;
end;
end;
end Open;
procedure Open
(State : in out T;
File_Len : out File_Length;
File_Path : in String;
Success : out Boolean)
is
begin
File_Len := 0;
Success := False;
end Open;
procedure Close (State : in out T) is
begin
State.S := Mounted;
end Close;
procedure Read
(State : in out T;
File_Len : in File_Length;
File_Pos : in out File_Offset;
Buf : out Buffer_Type;
Len : out Natural)
is
begin
Buf := (others => 0);
Len := 0;
end Read;
--------------------------------------------------------------------------
package C is new VFS (T => T, Initial => (S => Unmounted, others => <>));
function C_Mount return int
with
Export,
Convention => C,
External_Name => "ext2fs_mount";
function C_Mount return int
with
SPARK_Mode => Off
is
begin
return C.C_Mount;
end C_Mount;
function C_Open (File_Path : Strings.chars_ptr) return int
with
Export,
Convention => C,
External_Name => "ext2fs_dir";
function C_Open (File_Path : Strings.chars_ptr) return int
with
SPARK_Mode => Off
is
begin
return C.C_Open (File_Path);
end C_Open;
function C_Read (Buf : System.Address; Len : int) return int
with
Export,
Convention => C,
External_Name => "ext2fs_read";
function C_Read (Buf : System.Address; Len : int) return int
with
SPARK_Mode => Off
is
begin
return C.C_Read (Buf, Len);
end C_Read;
end FILO.FS.Ext2;